Advertisement

The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis

  • Yael Kusne
  • Nader SanaiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 853)

Abstract

Gliomas are primary cancers of the brain and the most lethal cancers known to man. In recent years the discovery of germinal regions in the postnatal brain containing neuronal stem and progenitor cell populations has led to the hypothesis that these cells may themselves serve as an origin of brain tumors. Stem cells that reside within the glioma tumor have been shown to display nonneoplastic stem-like characteristics, including expression of various stem cell markers, as well as capacity for self-renewal and multipotency. Furthermore, glioma tumors display marked similarities to the germinal regions of the brain. Investigations of human neural stem cells and their potential for malignancy may finally identify a cell-of-origin for human gliomas. This, in turn, may facilitate better therapeutic targeting leading to improved prognosis for glioma patients.

Keywords

Subventricular zone (SVZ) Neuro-oncogenesis Glioma cell of origin Neural stem cells and glioma Germinal regions and oncogenesis Neurogenesis and oncogenesis of glioma 

References

  1. 1.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Allen M. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7(10):733–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Knizetova P, Darling JL, Bartek J. Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. J Cell Mol Med. 2008;12(1):111–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Jain RK, Di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Rich JN. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Ruiz C, Huang W, Hegi ME, Lange K, Hamou M-F, Fluri E, Orend G. Differential gene expression analysis reveals activation of growth promoting signaling pathways by tenascin-C. Cancer Res. 2004;64(20):7377–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Garcion E, Halilagic A, Faissner A. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131(14):3423–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prudkin L. TGF-β Receptor Inhibitors Target the CD44 high/Id1 high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell. 2010;18(6):655–68.Google Scholar
  10. 10.
    Fu J, Yang Q-Y, Sai K, Chen F-R, Pang JC, Ng H-K, Chen Z-P. TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro Oncol. 2013;15(10):1353–65.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Haylock DN, Nilsson SK. Perspective stem cell regulation by the hematopoietic stem cell niche. Cell Cycle. 2005;4(10):1353–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Holland EC. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14(3):357–69.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Chetty C, Vanamala SK, Gondi CS, Dinh DH, Gujrati M, Rao JS. MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells. Cell Signal. 2012;24(2):549–59.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K, Tarasova Y, Wobus A. Nestin expression: a property of multi-lineage progenitor cells? Cell Mol Life Sci CMLS. 2004;61(19–20):2510–22.CrossRefGoogle Scholar
  15. 15.
    Yang XH et al. Nestin expression in different tumours and its relevance to malignant grade. J Clin Pathol. 2008;61(4):467–473.Google Scholar
  16. 16.
    Arai H, Ikota H, Sugawara K-I, Nobusawa S, Hirato J, Nakazato Y. Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas. Brain Tumor Pathol. 2012;29(3):160–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Dahmane N, Sánchez P, Gitton Y, Palma V, Sun T, Beyna M, Ruiz i Altaba A. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128(24):5201–12.PubMedGoogle Scholar
  18. 18.
    Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-M, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.CrossRefPubMedGoogle Scholar
  20. 20.
    Sanai N. Adult neural stem cells and gliomagenesis. In: Glioblastoma. Springer; 2010. p. 153–65.Google Scholar
  21. 21.
    Savarese TM, Jang T, Pang Low H, Salmonsen R, Litofsky NS, Matijasevic Z, Recht LD. Isolation of immortalized, INK4a/ARF-deficient cells from the subventricular zone after in utero N-ethyl-N-nitrosourea exposure. J Neurosurg. 2005;102(1):98–108.CrossRefPubMedGoogle Scholar
  22. 22.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Aldape K. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  23. 23.
    Jang T, Litofsky NS, Smith TW, Ross AH, Recht LD. Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neurocarcinogenesis. Neurobiol Dis. 2004;15(3):544–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Casaccia-Bonnefil P. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci. 2006;26(4):1107–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Katayama K-I, Ueno M, Yamauchi H, Nagata T, Nakayama H, Doi K. Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner. Neurobiol Dis. 2005;18(1):218–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Leonard JR, D’Sa C, Klocke BJ, Roth KA. Neural precursor cell apoptosis and glial tumorigenesis following transplacental ethyl-nitrosourea exposure. Oncogene. 2001;20(57):8281–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Zhu Y. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15(6):514–26.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Parada LF. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005;8(2):119–30.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36–47.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Baker SJ. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 2011;19(3):305–16.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Canoll P. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One. 2011;6(5):e20041.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Llaguno SRA, Chen J, Parada LF. Signaling in malignant astrocytomas: role of neural stem cells and its therapeutic implications. Clin Cancer Res. 2009;15(23):7124–9.CrossRefGoogle Scholar
  33. 33.
    Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, Verma IM. Development of a novel mouse glioma model using lentiviral vectors. Nat Med. 2009;15(1):110–6.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Li L, Liu F, Salmonsen RA, Turner TK, Litofsky NS, Di Cristofano A, Ross AH. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci. 2002;20(1):21–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Ding Z. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature. 2008;455(7216):1129–33.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro Oncol. 2013;15(1):91–6.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Lim DA, Cha S, Mayo MC, Chen M-H, Keles E, VandenBerg S, Berger MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007;9(4):424–9.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Young GS, Macklin EA, Setayesh K, Lawson JD, Wen PY, Norden AD, Kesari S. Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. J Neurooncol. 2011;104(1):261–9.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Zielinski CC. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer. 2006; 107(10):2512–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Adeberg S, Bostel T, König L, Welzel T, Debus J, Combs SE. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Age (years). 2014;64:8.Google Scholar
  41. 41.
    Corn BW, Raizer J, Kanner AA. Should the subventricular zone be part of the “rad” zone? J Neurooncol. 2014;118:423–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer. 2010;10(1):384.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Gupta T, Nair V, Paul SN, Kannan S, Moiyadi A, Epari S, Jalali R. Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J Neurooncol. 2012;109(1):195–203.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee P, Eppinga W, Lagerwaard F, Cloughesy T, Slotman B, Nghiemphu PL, Demarco J. Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys. 2013;86(4):609–15.CrossRefPubMedGoogle Scholar
  45. 45.
    Sonoda Y, Saito R, Kanamori M, Kumabe T, Uenohara H, Tominaga T. The association of subventricular zone involvement at recurrence with survival after repeat surgery in patients with recurrent glioblastoma. Neurol Med Chir. 2014;54(4):302–9.CrossRefGoogle Scholar
  46. 46.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338(6110):1080–4.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Weissleder R. Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269–77.Google Scholar
  48. 48.
    Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Luo L. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Siu J. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Barrow Brain Tumor Research CenterPhoenixUSA

Personalised recommendations