Skip to main content

Regulation of Subventricular Zone-Derived Cells Migration in the Adult Brain

  • Chapter
Stem Cell Biology in Neoplasms of the Central Nervous System

Abstract

The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999;96(1):25ā€“34. doi:10.1016/s0092-8674(00)80956-3.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A. 1999;96(20):11619ā€“24.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci U S A. 2013;110(11):E1045ā€“54. doi:10.1073/pnas.1219563110. 1219563110 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Luskin MB, Zigova T, Soteres BJ, Stewart RR. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci. 1997;8(5):351ā€“66. doi:10.1006/mcne.1996.0592. S1044-7431(96)90592-8 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Lazarini F, Lledo PM. Is adult neurogenesis essential for olfaction? Trends Neurosci. 2011;34(1):20ā€“30. doi:10.1016/j.tins.2010.09.006. S0166-2236(10)00137-2 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11(10):1153ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996;271(5251):978ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci. 2003;6(5):507ā€“18. doi:10.1038/nn1048.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Capilla-Gonzalez V, Cebrian-Silla A, Guerrero-Cazares H, Garcia-Verdugo JM, Quinones-Hinojosa A. The generation of oligodendroglial cells is preserved in the rostral migratory stream during aging. Front Cell Neurosci. 2013;7:147. doi:10.3389/fncel.2013.00147.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  10. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Belvindrah R, Lazarini F, Lledo PM. Postnatal neurogenesis: from neuroblast migration to neuronal integration. Rev Neurosci. 2009;20(5ā€“6):331ā€“46.

    PubMedĀ  Google ScholarĀ 

  12. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179ā€“93. doi:10.1038/nrn1867. nrn1867 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Petreanu L, Alvarez-Buylla A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci. 2002;22(14):6106ā€“13.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Capilla-Gonzalez V, Gil-Perotin S, Ferragud A, Bonet-Ponce L, Canales JJ, Garcia-Verdugo JM. Exposure to N-ethyl-N-nitrosourea in adult mice alters structural and functional integrity of neurogenic sites. PLoS One. 2012;7(1):e29891. doi:10.1371/journal.pone.0029891. PONE-D-11-07990 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Sanai N, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A. Comment on ā€œHuman neuroblasts migrate to the olfactory bulb via a lateral ventricular extensionā€. Science. 2007;318(5849):393. doi:10.1126/science.1145011. 318/5849/393b [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243ā€“9. doi:10.1126/science.1136281. 1136281 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 2011;21(11):1534ā€“50. doi:10.1038/cr.2011.83. cr201183 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Kam M, Curtis MA, McGlashan SR, Connor B, Nannmark U, Faull RL. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J Chem Neuroanat. 2009;37(3):196ā€“205. doi:10.1016/j.jchemneu.2008.12.009. S0891-0618(08)00165-8 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Garcia-Verdugo JM, Berger MS, Alvarez-Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740ā€“4. doi:10.1038/nature02301. nature02301 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Guerrero-Cazares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, Garcia-Verdugo JM, Quinones-Hinojosa A. Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol. 2011;519(6):1165ā€“80. doi:10.1002/cne.22566.

    PubMedĀ  Google ScholarĀ 

  21. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494(3):415ā€“34. doi:10.1002/cne.20798.

    PubMedĀ  Google ScholarĀ 

  22. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478(7369):382ā€“6. doi:10.1038/nature10487. nature10487 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Kaneko N, Marin O, Koike M, Hirota Y, Uchiyama Y, Wu JY, Lu Q, Tessier-Lavigne M, Alvarez-Buylla A, Okano H, Rubenstein JL, Sawamoto K. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron. 2010;67(2):213ā€“23. doi:10.1016/j.neuron.2010.06.018.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311(5761):629ā€“32.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Vukovic J, Blackmore DG, Jhaveri D, Bartlett PF. Activation of neural precursors in the adult neurogenic niches. Neurochem Int. 2011;59(3):341ā€“6. doi:10.1016/j.neuint.2011.04.003. S0197-0186(11)00156-2 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci. 2012;6:70. doi:10.3389/fncel.2012.00070.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  27. Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci. 1999;11(12):4357ā€“66. doi:ejn873 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, Marin R, Marti-Vilalta JL, Garcia-Verdugo JM. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74(5):357ā€“65. doi:10.1212/WNL.0b013e3181cbccec. WNL.0b013e3181cbccec [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26(24):6627ā€“36.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther. 2011;6(4):327ā€“38. doi:BSP/CSCRT/E-Pub/00090 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Capilla-Gonzalez V, Guerrero-Cazares H, Bonsu JM, Gonzalez-Perez O, Achanta P, Wong J, Garcia-Verdugo JM, Quinones-Hinojosa A. The subventricular zone is able to respond to a demyelinating lesion after localized radiation. Stem Cells. 2014;32(1):59ā€“69. doi:10.1002/stem.1519.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703ā€“16.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res. 2008;331(1):179ā€“91. doi:10.1007/s00441-007-0461-z.

    PubMedĀ  Google ScholarĀ 

  34. Morrens J, Van Den Broeck W, Kempermann G. Glial cells in adult neurogenesis. Glia. 2012;60(2):159ā€“74. doi:10.1002/glia.21247.

    PubMedĀ  Google ScholarĀ 

  35. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci. 1997;17(13):5046ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 2008;11(3):277ā€“84. doi:10.1038/nn2059. nn2059 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265ā€“78.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Gil-Perotin S, Alvarez-Buylla A, Garcia-Verdugo JM. Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol. 2009;203:1ā€“101. ix.

    PubMedĀ  Google ScholarĀ 

  39. Ming GL, Song HJ. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223ā€“50. doi:10.1146/annurev.neuro.28.051804.101459.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23(2):257ā€“71.

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Didier M, Harandi M, Aguera M, Bancel B, Tardy M, Fages C, Calas A, Stagaard M, Mollgard K, Belin MF. Differential immunocytochemical staining for glial fibrillary acidic (GFA) protein, S-100 protein and glutamine synthetase in the rat subcommissural organ, nonspecialized ventricular ependyma and adjacent neuropil. Cell Tissue Res. 1986;245(2):343ā€“51.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci. 1996;16(8):2649ā€“58.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005;25(1):10ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629ā€“34.

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. Peretto P, Merighi A, Fasolo A, Bonfanti L. Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull. 1997;42(1):9ā€“21. doi:S0361-9230(96)00116-5 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Pencea V, Bingaman KD, Freedman LJ, Luskin MB. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol. 2001;172(1):1ā€“16. doi:10.1006/exnr.2001.7768.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. De Marchis S, Fasolo A, Puche AC. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol. 2004;476(3):290ā€“300. doi:10.1002/cne.20217.

    PubMedĀ  Google ScholarĀ 

  48. Sawada M, Sawamoto K. Mechanisms of neurogenesis in the normal and injured adult brain. Keio J Med. 2013;62(1):13ā€“28.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Porlan E, Perez-Villalba A, Delgado AC, Ferron SR. Paracrine regulation of neural stem cells in the subependymal zone. Arch Biochem Biophys. 2013;534(1ā€“2):11ā€“9. doi:10.1016/j.abb.2012.10.001. S0003-9861(12)00360-8 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Pencea V, Luskin MB. Prenatal development of the rodent rostral migratory stream. J Comp Neurol. 2003;463(4):402ā€“18. doi:10.1002/cne.10746.

    PubMedĀ  Google ScholarĀ 

  51. Mobley AS, Bryant AK, Richard MB, Brann JH, Firestein SJ, Greer CA. Age-dependent regional changes in the rostral migratory stream. Neurobiol Aging. 2013;34(7):1873ā€“81. doi:10.1016/j.neurobiolaging.2013.01.015. S0197-4580(13)00045-6 [pii].

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  52. Namihira M, Nakashima K. Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol. 2013;23(6):921ā€“7. doi:10.1016/j.conb.2013.06.002. S0959-4388(13)00121-9 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H, Warner DS, Liu C, Eroglu C, Kuo CT. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature. 2013;497(7449):369ā€“73. doi:10.1038/nature12069. nature12069 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Mejia-Gervacio S, Murray K, Lledo PM. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain. Neural Dev. 2011;6:4. doi:10.1186/1749-8104-6-4. 1749-8104-6-4 [pii].

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  55. Rosengren S, Henson PM, Worthen GS. Migration-associated volume changes in neutrophils facilitate the migratory process in vitro. Am J Physiol. 1994;267(6 Pt 1):C1623ā€“32.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Rotte A, Pasham V, Yang W, Eichenmuller M, Bhandaru M, Shumilina E, Lang F. Phosphoinositide 3-kinase-dependent regulation of Na+/H+ exchanger in dendritic cells. Pflugers Arch. 2010;460(6):1087ā€“96. doi:10.1007/s00424-010-0879-0.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Klein M, Seeger P, Schuricht B, Alper SL, Schwab A. Polarization of Na(+)/H(+) and Cl(āˆ’)/HCO (3)(āˆ’) exchangers in migrating renal epithelial cells. J Gen Physiol. 2000;115(5):599ā€“608.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Horesh D, Sapir T, Francis F, Wolf SG, Caspi M, Elbaum M, Chelly J, Reiner O. Doublecortin, a stabilizer of microtubules. Hum Mol Genet. 1999;8(9):1599ā€“610.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA. doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell. 1998;92(1):63ā€“72. doi:10.1016/s0092-8674(00)80899-5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron. 1999;23(2):247ā€“56. doi:S0896-6273(00)80777-1 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Ocbina PJ, Dizon ML, Shin L, Szele FG. Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres. Mol Cell Neurosci. 2006;33(2):126ā€“35. doi:10.1016/j.mcn.2006.06.014. S1044-7431(06)00134-5 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Koizumi H, Higginbotham H, Poon T, Tanaka T, Brinkman BC, Gleeson JG. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci. 2006;9(6):779ā€“86. doi:10.1038/nn1704. nn1704 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Kappeler C, Saillour Y, Baudoin JP, Tuy FP, Alvarez C, Houbron C, Gaspar P, Hamard G, Chelly J, Metin C, Francis F. Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice. Hum Mol Genet. 2006;15(9):1387ā€“400.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 2008;233(7):779ā€“91. doi:10.3181/0711-MR-308. 0711-MR-308 [pii].

    CASĀ  Google ScholarĀ 

  65. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 2005;85(2):423ā€“93. doi:10.1152/physrev.00011.2004. 85/2/423 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Lytle C, Forbush 3rd B. Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol. 1996;270(2 Pt 1):C437ā€“48.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A. Cl-uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol. 2004;557(Pt 3):829ā€“41. doi:10.1113/jphysiol.2004.062471. jphysiol.2004.062471 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev. 2000;80(1):211ā€“76.

    CASĀ  PubMedĀ  Google ScholarĀ 

  69. Strange K. Cellular volume homeostasis. Adv Physiol Educ. 2004;28(1ā€“4):155ā€“9. doi:10.1152/advan.00034.2004. 28/4/155 [pii].

    PubMedĀ  Google ScholarĀ 

  70. Garzon-Muvdi T, Schiapparelli P, Rhys C, Guerrero-Cazares H, Smith C, Kim DH, Kone L, Farber H, Lee DY, An SS, Levchenko A, Quinones-Hinojosa A. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol. 2012;10(5):e1001320. doi:10.1371/journal.pbio.1001320. PBIOLOGY-D-11-02751 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PHC, Brady RO, Martin LJ, Kulkarni AB. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A. 1996;93(20):11173ā€“8.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci. 1998;18(16):6370ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H, Saruta K, Iwasato T, Itohara S, Hashimoto M, Nakajima K, Ogawa M, Kulkarni AB, Mikoshiba K. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development. 2007;134(12):2273ā€“82. doi:10.1242/dev.02854. dev.02854 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  74. Hirota Y, Ohshima T, Kaneko N, Ikeda M, Iwasato T, Kulkarni AB, Mikoshiba K, Okano H, Sawamoto K. Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci. 2007;27(47):12829ā€“38. doi:10.1523/JNEUROSCI. 1014-07.2007. 27/47/12829 [pii].

    Google ScholarĀ 

  75. Bonfanti L, Olive S, Poulain DA, Theodosis DT. Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience. 1992;49(2):419ā€“36. doi:0306-4522(92)90107-D [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol. 2006;80(3):129ā€“64. doi:10.1016/j.pneurobio.2006.08.003.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Yang P, Yin X, Rutishauser U. Intercellular space is affected by the polysialic acid content of NCAM. J Cell Biol. 1992;116(6):1487ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Hu H, Tomasiewicz H, Magnuson T, Rutishauser U. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron. 1996;16(4):735ā€“43. doi:S0896-6273(00)80094-X [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Bonfanti L, Theodosis DT. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience. 1994;62(1):291ā€“305. doi:0306-4522(94)90333-6 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature. 1994;367(6462):455ā€“9. doi:10.1038/367455a0.

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci. 2000;20(4):1446ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Ono K, Tomasiewicz H, Magnuson T, Rutishauser U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron. 1994;13(3):595ā€“609. doi:0896-6273(94)90028-0 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000;275(29):21785ā€“8. doi:10.1074/jbc.R000003200. R000003200 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. Murase S, Horwitz AF. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci. 2002;22(9):3568ā€“79. doi:20026349. 22/9/3568 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  85. Emsley JG, Hagg T. alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol. 2003;183(2):273ā€“85. doi:S0014488603002097 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  86. Mobley AK, McCarty JH. beta8 integrin is essential for neuroblast migration in the rostral migratory stream. Glia. 2011;59(11):1579ā€“87. doi:10.1002/glia.21199.

    PubMedĀ  Google ScholarĀ 

  87. Tessier-Lavigne M. Wiring the brain: the logic and molecular mechanisms of axon guidance and regeneration. Harvey Lect. 2002;98:103ā€“43.

    PubMedĀ  Google ScholarĀ 

  88. Staquicini FI, Dias-Neto E, Li J, Snyder EY, Sidman RL, Pasqualini R, Arap W. Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin alpha6beta1 in mouse neural stem cells. Proc Natl Acad Sci U S A. 2009;106(8):2903ā€“8. doi:10.1073/pnas.0813286106. 0813286106 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059ā€“87. doi:10.1101/gad.938601.

    CASĀ  PubMedĀ  Google ScholarĀ 

  90. Angot E, Loulier K, Nguyen-Ba-Charvet KT, Gadeau AP, Ruat M, Traiffort E. Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb. Stem Cells. 2008;26(9):2311ā€“20. doi:10.1634/stemcells. 2008-0297. 2008-0297 [pii].

    Google ScholarĀ 

  91. Hor CH, Tang BL. Sonic hedgehog as a chemoattractant for adult NPCs. Cell Adh Migr. 2010;4(1):1ā€“3. doi:9914 [pii].

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  92. Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, Kriegstein AR, Alvarez-Buylla A. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron. 2011;71(2):250ā€“62. doi:10.1016/j.neuron.2011.05.018. S0896-6273(11)00404-1 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Nguyen-Ba-Charvet KT, Chedotal A. Role of Slit proteins in the vertebrate brain. J Physiol Paris. 2002;96(1ā€“2):91ā€“8. doi:10.1016/s0928-4257(01)00084-5. Pii s0928-4257(01)00084-5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  94. Wong K, Park HT, Wu JY, Rao Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev. 2002;12(5):583ā€“91. doi:10.1016/s0959-437x(02)00343-x.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Chilton JK. Molecular mechanisms of axon guidance. Dev Biol. 2006;292(1):13ā€“24. doi:10.1016/j.ydbio.2005.12.048.

    CASĀ  PubMedĀ  Google ScholarĀ 

  96. Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, Baron-Van Evercooren A, Sotelo C, Chedotal A. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci. 2004;24(6):1497ā€“506. doi:10.1523/jneurosci. 4729-03.2004.

    Google ScholarĀ 

  97. Kitabgi P, Melik-Parsadaniantz S, Rostene W (2006) Chemokines: a new peptide family of neuromodulators. Handbook of Biologically Active Peptides. p. 559ā€“565. doi:10.1016/B978-012369442-3/50083-0.

    Google ScholarĀ 

  98. Schonemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol. 2008;510(2):207ā€“20. doi:10.1002/cne.21780.

    PubMedĀ  Google ScholarĀ 

  99. Odemis V, Boosmann K, Heinen A, Kury P, Engele J. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J Cell Sci. 2010;123(Pt 7):1081ā€“8. doi:10.1242/jcs.062810.

    PubMedĀ  Google ScholarĀ 

  100. Tiveron MC, Boutin C, Daou P, Moepps B, Cremer H. Expression and function of CXCR7 in the mouse forebrain. J Neuroimmunol. 2010;224(1ā€“2):72ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010;28(3):545ā€“54. doi:10.1002/stem.306.

    PubMedĀ  Google ScholarĀ 

  102. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963ā€“70. doi:10.1038/nm747. nm747 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  103. Liu BF, Gao EJ, Zeng XZ, Ji M, Cai Q, Lu Q, Yang H, Xu QY. Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain. Brain Res. 2006;1106(1):30ā€“9. doi:10.1016/j.brainres.2006.05.111. S0006-8993(06)01534-4 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A. 2007;104(11):4694ā€“9.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Otero L, Zurita M, Bonilla C, Rico MA, Aguayo C, Rodriguez A, Vaquero J. Endogenous neurogenesis after intracerebral hemorrhage. Histol Histopathol. 2012;27(3):303ā€“15.

    CASĀ  PubMedĀ  Google ScholarĀ 

  106. Del Carmen Gomez-Roldan M, Perez-Martin M, Capilla-Gonzalez V, Cifuentes M, Perez J, Garcia-Verdugo JM, Fernandez-Llebrez P. Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. J Comp Neurol. 2008;507(4):1571ā€“87. doi:10.1002/cne.21618.

    PubMedĀ  Google ScholarĀ 

  107. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26(30):7907ā€“18. doi:10.1523/JNEUROSCI. 1299-06.2006. 26/30/7907 [pii].

    Google ScholarĀ 

  108. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A. 2002;99(20):13211ā€“6. doi:10.1073/pnas.192314199. 192314199 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells. 2009;27(8):2032ā€“43. doi:10.1002/stem.119.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Kaneko N, Sawamoto K. Neuronal migration in the adult brain. Nihon Shinkei Seishin Yakurigaku Zasshi. 2007;27(5ā€“6):215ā€“8.

    PubMedĀ  Google ScholarĀ 

  111. Gonzalez-Perez O, Gutierrez-Fernandez F, Lopez-Virgen V, Collas-Aguilar J, Quinones-Hinojosa A, Garcia-Verdugo JM. Immunological regulation of neurogenic niches in the adult brain. Neuroscience. 2012;226:270ā€“81. doi:10.1016/j.neuroscience.2012.08.053. S0306-4522(12)00888-3 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Logan TT, Villapol S, Symes AJ. TGF-beta superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One. 2013;8(3):e59250. doi:10.1371/journal.pone.0059250. PONE-D-12-27158 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Yan YP, Sailor KA, Vemuganti R, Dempsey RJ. Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci. 2006;24(1):45ā€“54. doi:10.1111/j.1460-9568.2006.04872.x. EJN4872 [pii].

    PubMedĀ  Google ScholarĀ 

  114. Kang SS, Keasey MP, Arnold SA, Reid R, Geralds J, Hagg T. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol Dis. 2012;49C:68ā€“78. doi:10.1016/j.nbd.2012.08.020. S0969-9961(12)00307-5 [pii].

    Google ScholarĀ 

  115. Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, Porcheri C, Brambilla E, Cavasinni F, Bergamaschi A, Garcia-Verdugo JM, Comi G, Khoury SJ, Martino G. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008;131(Pt 10):2564ā€“78. doi:10.1093/brain/awn198. awn198 [pii].

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  116. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117ā€“22. doi:10.1073/pnas.0408258102. 0408258102 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. Tran PB, Ren D, Veldhouse TJ, Miller RJ. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res. 2004;76(1):20ā€“34. doi:10.1002/jnr.20001.

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Jaerve A, Muller HW. Chemokines in CNS injury and repair. Cell Tissue Res. 2012;349(1):229ā€“48. doi:10.1007/s00441-012-1427-3.

    CASĀ  PubMedĀ  Google ScholarĀ 

  119. Turbic A, Leong SY, Turnley AM. Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS One. 2011;6(9):e25406. doi:10.1371/journal.pone.0025406. PONE-D-11-06373 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  120. Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006;26(12):3182ā€“91. doi:10.1523/JNEUROSCI. 0156-06.2006. 26/12/3182 [pii].

    Google ScholarĀ 

  121. Gordon RJ, Mehrabi NF, Maucksch C, Connor B. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone. Experimental neurology. 2012;233(1):587ā€“94. doi:10.1016/j.expneurol.2011.11.029. S0014-4886(11)00433-X [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  122. Widera D, Holtkamp W, Entschladen F, Niggemann B, Zanker K, Kaltschmidt B, Kaltschmidt C. MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol. 2004;83(8):381ā€“7. doi:10.1078/0171-9335-00403. S0171-9335(04)70406-9 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  123. Gordon RJ, McGregor AL, Connor B. Chemokines direct neural progenitor cell migration following striatal cell loss. Mol Cell Neurosci. 2009;41(2):219ā€“32. doi:10.1016/j.mcn.2009.03.001. S1044-7431(09)00061-X [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  124. Liu XS, Zhang ZG, Zhang RL, Gregg SR, Wang L, Yier T, Chopp M. Chemokine ligand 2 (CCL2) induces migration and differentiation of subventricular zone cells after stroke. J Neurosci Res. 2007;85(10):2120ā€“5. doi:10.1002/jnr.21359.

    CASĀ  PubMedĀ  Google ScholarĀ 

  125. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27(6):1213ā€“24. doi:10.1038/sj.jcbfm.9600432. 9600432 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  126. Saha B, Peron S, Murray K, Jaber M, Gaillard A. Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res. 2013;11(3):965ā€“77. doi:10.1016/j.scr.2013.06.006. S1873-5061(13)00079-2 [pii].

    PubMedĀ  Google ScholarĀ 

  127. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739ā€“47. doi:10.1634/stemcells. 2005-0281. 2005ā€“0281 [pii].

    Google ScholarĀ 

  128. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab. 2006;26(1):125ā€“34. doi:10.1038/sj.jcbfm.9600172. 9600172 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  129. Itoh T, Satou T, Ishida H, Nishida S, Tsubaki M, Hashimoto S, Ito H. The relationship between SDF-1alpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res. 2009;31(1):90ā€“102. doi:10.1179/174313208X332995.

    CASĀ  PubMedĀ  Google ScholarĀ 

  130. Aguirre A, Gallo V. Reduced EGFR signaling in progenitor cells of the adult subventricular zone attenuates oligodendrogenesis after demyelination. Neuron Glia Biol. 2007;3(3):209ā€“20. doi:10.1017/S1740925X08000082. S1740925X08000082 [pii].

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  131. Decker L, Picard-Riera N, Lachapelle F, Baron-Van Evercooren A. Growth factor treatment promotes mobilization of young but not aged adult subventricular zone precursors in response to demyelination. J Neurosci Res. 2002;69(6):763ā€“71. doi:10.1002/jnr.10411.

    CASĀ  PubMedĀ  Google ScholarĀ 

  132. Lachapelle F, Avellana-Adalid V, Nait-Oumesmar B, Baron-Van Evercooren A. Fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor AB (PDGF AB) promote adult SVZ-derived oligodendrogenesis in vivo. Mol Cell Neurosci. 2002;20(3):390ā€“403. doi:S1044743102911243 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  133. Wang Y, Jin K, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res. 2007;85(4):740ā€“7. doi:10.1002/jnr.21169.

    CASĀ  PubMedĀ  Google ScholarĀ 

  134. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC, Wang R. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011;1367:103ā€“13. doi:10.1016/j.brainres.2010.10.063. S0006-8993(10)02332-2 [pii].

    CASĀ  PubMedĀ  Google ScholarĀ 

  135. Harms KM, Li L, Cunningham LA. Murine neural stem/progenitor cells protect neurons against ischemia by HIF-1alpha-regulated VEGF signaling. PLoS One. 2010;5(3):e9767. doi:10.1371/journal.pone.0009767.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  136. Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells. 2008;26(12):3139ā€“49. doi:10.1634/stemcells. 2008-0519. 2008-0519 [pii].

    Google ScholarĀ 

  137. Courtes S, Vernerey J, Pujadas L, Magalon K, Cremer H, Soriano E, Durbec P, Cayre M. Reelin controls progenitor cell migration in the healthy and pathological adult mouse brain. PLoS One. 2011;6(5):e20430. doi:10.1371/journal.pone.0020430. PONE-D-11-03174 [pii].

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  138. Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 2008;15(10):739ā€“52. doi:10.1038/gt.2008.41.

    CASĀ  PubMedĀ  Google ScholarĀ 

  139. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156ā€“62. doi:10.3171/2008.4.17536.

    PubMedĀ  Google ScholarĀ 

  140. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987ā€“96. doi:10.1056/NEJMoa043330.

    CASĀ  PubMedĀ  Google ScholarĀ 

  141. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000;97(23):12846ā€“51. doi:10.1073/pnas.97.23.12846.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  142. Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, Aboody KS. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res. 2008;6(12):1819ā€“29. doi:10.1158/1541-7786.MCR-08-0146.

    CASĀ  PubMedĀ  Google ScholarĀ 

  143. Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol. 2006;79(2):125ā€“33. doi:10.1007/s11060-006-9121-5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  144. Kendall SE, Najbauer J, Johnston HF, Metz MZ, Li S, Bowers M, Garcia E, Kim SU, Barish ME, Aboody KS, Glackin CA. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells. 2008;26(6):1575ā€“86. doi:10.1634/stemcells. 2007-0887.

    Google ScholarĀ 

  145. Frank RT, Najbauer J, Aboody KS. Concise review: stem cells as an emerging platform for antibody therapy of cancer. Stem Cells. 2010;28(11):2084ā€“7. doi:10.1002/stem.513.

    PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  146. Aboody KS, Najbauer J, Metz MZ, Dā€™Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Brown CE, Kim SU, Badie B, Portnow J. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med. 2013;5(184):184ra159. doi:10.1126/scitranslmed.3005365.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Guerrero-Cazares M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capilla-Gonzalez, V., Lavell, E., QuiƱones-Hinojosa, A., Guerrero-Cazares, H. (2015). Regulation of Subventricular Zone-Derived Cells Migration in the Adult Brain. In: Ehtesham, M. (eds) Stem Cell Biology in Neoplasms of the Central Nervous System. Advances in Experimental Medicine and Biology, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-16537-0_1

Download citation

Publish with us

Policies and ethics