Antenna for Fifth Generation (5G) Using a EBG Structure

  • Almir Souza e Silva NetoEmail author
  • Marta Laís de Macedo Dantas
  • Joicy dos Santos Silva
  • Humberto César Chaves Fernandes
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)


Currently, there is a breakthrough in wireless networks - Wi-Fi - but also in studies on the optimization of antennas. This article was developed with the purpose of presenting an antenna applied for fifth generation (5G), operating at frequency of 28 GHz, using an EBG (Electromagnetic Band Gap) structure to obtain an increased bandwidth. With faster speed, lower latency and performance significantly greater than any other, shows up the internet of the future. The proposed antenna uses, as substrate, RT5880, Rogers Corporation, with 2.2 and relative permittivity of 0.009 loss tangent and multi-cylinder drilled in the ground plan of radius of 0.2 mm. Is not required no drilling in the substrate. To obtain the results, simulations and analysis of the structure under study was used the HFSS TM program (High Frequency Structural Simulator). In view of the good results this antenna can be considered a good candidate for applications in 5G.


Antenna Electromagnetic Band Gap (EBG) 5G Technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahl, I.J., Barthia, P.: Microstrip Antennas. Artech House (1982)Google Scholar
  2. 2.
    Rappaport, T.S., et al.: Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  3. 3.
    Lai, H.W., Luk, K.-M., Leung, K.W.: Dense dielectric patch antenna—A new kind of low-profile antenna element for wireless communications. IEEE Trans. Antennas Propag. 61(8), 4239–4245 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Haraz, O.M., Elboushi, A., Alshebeili, S.A., Sebak, A.-R.: Dense Dielectric Patch Array Antenna with Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks. IEEE Access, 6 (2014)Google Scholar
  5. 5.
    Yangand, F., Rahmat-Samii, Y.: Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 51(10), 2936–2946 (2003)CrossRefGoogle Scholar
  6. 6.
    Zaman, M.I., Hamedani, F.T., Amjadi, H.: A New EBG structure and its application on microstrip patch antenna. In: International Symposium on Antenna Technology and Applied Electromagnetics, pp. 1–3 (June 2012)Google Scholar
  7. 7.
    Santos, G.K.C.: Aplicação do método LTT às estruturas retangulares e triangulares em multicamadas e empilhadas em substratos pbg para comunicações móveis, Tese de Mestrado, Universidade Federal do Rio Grande do Norte (2005)Google Scholar
  8. 8.
    Radisic, V., Qian, Y., Coccioli, R., Itoh, T.: Novel 2-D photonic bandgap structure for microstrip lines. IEEE Microwave Guided Wave Lett. 8, 69–71 (1998)CrossRefGoogle Scholar
  9. 9.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Almir Souza e Silva Neto
    • 1
    Email author
  • Marta Laís de Macedo Dantas
    • 1
  • Joicy dos Santos Silva
    • 1
  • Humberto César Chaves Fernandes
    • 2
  1. 1.Federal Institute of Education, Science and Technology of ParaíbaIFPB, Cordination of InformaticsParaíbaBrazil
  2. 2.Department of Electrical EngineeringFederal University of Rio Grande do Norte, UFRNNatalBrasil

Personalised recommendations