Modelling of Innovative Controllable Structures Made of Granular Materials

  • Robert ZalewskiEmail author
  • Paweł SkalskI
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)


The viscoplastic behavior of ”innovative” structure is considered. Investigated structures are created on the basis of vacuum packed particles. Partial vacuum generated inside a hermetic sleeve filled with loose granular material transforms the system from semi-liquid to semi-solid state. Such phenomenon, known as a ”jamming mechanism”, is strongly nonlinear in considered structures. Special granular structures have recently found interesting engineering and biomedical applications such as vacuum mattresses, orthopedic orthesis, universal robotic grippers and flexible endoscopes. To capture a response of the specially designed granular sample to external loading, a Bodner-Partom viscoplastic constitutive model has been chosen. The identification procedure is based on experimental compression tests realized at various strain rates and underpressure levels.


vacuum packed particles Bodner-Partom model identification experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Żółkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin American Journal of Solids and Structures 10, 39–57 (2013)CrossRefGoogle Scholar
  2. 2.
    Żółkiewski, S.: Damped Vibrations Problem Of Beams Fixed On The Rotational Disk. International Journal of Bifurcation and Chaos 21, 3033–3041 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chybowski, L.: Qualitative and Quantitative Multi-Criteria Models of the Importance of the Components in Reliability Structure of a Complex Technical System. Journal of KONBIN 4(24), 33–48 (2012)Google Scholar
  4. 4.
    Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M., Lipson, H., Jaeger, H.: Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences (PNAS) 107, 18809–18814 (2010)CrossRefGoogle Scholar
  5. 5.
    Argon, A.S.: A theory for the low temperature plastic deformation of glassy polymers. Phil. Mag. 28, 839–865 (1973)CrossRefGoogle Scholar
  6. 6.
    Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc. Roy. Soc. 302, 453–472 (1968)CrossRefGoogle Scholar
  7. 7.
    Wu, P.D., Van der Giessen, E.: On neck propagation in amorphous glassy polymers under plane strain tension. Int. J. Plast. 11, 211–235 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)CrossRefGoogle Scholar
  9. 9.
    Van der Aa, H.C.E., Van der Aa, M.A.H., Schreurs, P.J.G., Baaijens, F.P.T., Van Veenen, W.J.: An experimental and numerical study of the wall ironing process of polymer coated sheet metal. Mech. Mater. 32, 423–443 (2000)CrossRefGoogle Scholar
  10. 10.
    Ho, K., Krempl, E.: Extension of the viscoplasticity theory based on overstress (VBO) to capture non-standard rate dependence in solids. Int. J. Plast. 18, 851–872 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Colak, O.U.: Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plast. 21, 145–160 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zaıri, F., Woźnica, K., Nait-Abdelaziz, M., Gloaguen, J.M.: Elasto-viscoplastic constitutive equations for the description of glassy polymers behaviour at constant strain rate. J. Eng. Mater. Technol. 129, 29–35 (2007)CrossRefGoogle Scholar
  13. 13.
    Pyrz, M., Zairi, F.: Identification of viscoplastic parameters of phenomenological constitutive equations for polymers by deterministic and evolutionary approach. Modeling and Simulation in Materials Science and Engineering 15, 85–103 (2007)CrossRefGoogle Scholar
  14. 14.
    Pyrz, M., Zalewski, R.: Modeling of granular media submitted to internal underpressure. Mechanics Research Communications 37, 141–144 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zalewski, R.: Constitutive model for special granular structures. International Journal of Non-Linear Mechanics 45, 279–285 (2010)CrossRefGoogle Scholar
  16. 16.
    Zalewski, R., Pyrz, M.: Modeling and parameter identification of granular plastomer conglomerate submitted to internal underpressure. Engineering Structures 32, 2424–2431 (2010)CrossRefGoogle Scholar
  17. 17.
    Zalewski, R., Pyrz, M.: Experimental study and modeling of polymer granular structures submitted to internal underpressure. Mechanics of Materials 57, 75–85 (2013)CrossRefGoogle Scholar
  18. 18.
    Bodner, S.R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 42, 385–389 (1975)CrossRefGoogle Scholar
  19. 19.
    Zalewski, R.: Modeling and research of the partial vacuum impact on mechanical properties of special granular structures. Wydawnictwa Komunikacji i Łączności, Warsaw (2013) (in polish) ISBN 978-83-206-1851-8Google Scholar
  20. 20.
    Kłosowski, P., Zagubień, A., Woźnica, K.: Investigation on rheological properties of technical fabric Panama. Archive of Applied Mechanics 73, 661–681 (2004)CrossRefGoogle Scholar
  21. 21.
    Rowley, M.A., Thornton, E.A.: Constitutive modelling of the visco-plastic response hastelloy-X and aluminum alloy 8009. J. Eng. Mat. Tech. 118, 9–27 (1996)CrossRefGoogle Scholar
  22. 22.
    Pyrz, M., Woźnica, K.: Evolutionary based tool for parameters identification of constitutive models. Matériaux du 10éme Séminaire Franco-Polonais de Mécanique, Ecole Polytechnique de Varsovie, Faculté des Voitures et des Machines Lourdes, Varsovie, Poland, pp. 46–58 (2002)Google Scholar
  23. 23.
    Zalewski, R., Wolszakiewicz, T.: Analysis of uniaxial tensile tests for homogeneous solid propellants under various loading conditions. Central European Journal of Energetic Materials 8, 223–231 (2011)Google Scholar
  24. 24.
    Zalewski, R., Pyrz, M., Wolszakiewicz, T.: Modeling of Solid Propellants Viscoplastic Behavior Using Evolutionary Algorithms. Central European Journal of Energetic Materials 7, 289–300 (2010)Google Scholar
  25. 25.
    Bajkowski, J., Jasiński, M., Mączak, J., Radkowski, S., Zalewski, R.: The active magnetorheological support as an element of damping of vibrations transferred from the ground to large-scale structure supports. Key Engineering Materials 518, 350–357 (2012)CrossRefGoogle Scholar
  26. 26.
    Ptak, M., Rusiński, E., Karliński, J., Dragan, S.: Evaluation of kinematics of SUV to pedestrian impact-lower leg impactor and dummy approach. Archives of Civil and Mechanical Engineering 12, 68–73 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Machines Design FundamentalsWarsawPoland
  2. 2.Institute of Aviation, Centre of New TechnologiesWarsawPoland

Personalised recommendations