Novel Varactor-Loaded Phasing Line for Reflectarray Unit Cell with Large Reconfigurability Frequency Range

  • Sandra CostanzoEmail author
  • Francesca Venneri
  • Antonio Raffo
  • Giuseppe Di Massa
  • Pasquale Corsonello
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)


A novel phasing line is proposed to improve the reconfigurability frequency range of an aperture-coupled reflectarray unit cell. A couple of broadband radial stubs loaded by a single varactor diode is adopted to realize the dynamic phase shift mechanism, extending the unit cell beam-scanning and/or reshaping pattern capabilities within a broader frequency range. The radiating structure is properly optimized at 11.5 GHz, obtaining a full phase tuning range within a very large frequency span of about 1.35 GHz.


Reflectarray reconfigurable antennas radiocommunications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, J., Encinar, J.: Reflectarray antennas. Wiley-IEEE Press (2008)Google Scholar
  2. 2.
    Hum, S.V., Okoniewski, M., Davies, R.J.: Realizing an electronically tunable reflectarray using varactor diode-tuned elements. IEEE Microw. Wirel. Compon. Lett. 15(6), 422–424 (2005)CrossRefGoogle Scholar
  3. 3.
    Riel, M., Laurin, J.J.: Design of an electronically beam scanning reflectarray using aperture-coupled elements. IEEE Trans. Antennas Propag. 55(5), 1260–1266 (2007)CrossRefGoogle Scholar
  4. 4.
    Venneri, F., Costanzo, S., Di Massa, G.: Reconfigurable aperture-coupled reflectarray element tuned by a single varactor diode. Electronics Letters 48, 68–69 (2012)CrossRefGoogle Scholar
  5. 5.
    Bildik, S., Dieter, S., Fritzsch, C., Menzel, W., Jakoby, R.: Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans. Antennas Propag. 6(1), 122–132 (2015)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Yang, F., Nayeri, P., Elsherbeni, A.Z.: Recent advances in beam-scanning reflectarray antennas (URSI GASS), XXXI URSI (2014)Google Scholar
  7. 7.
    Hum, S.V., Perruisseau-Carrier, J.: Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review. IEEE Trans. Antennas Propag. 62(1), 183–198 (2014)CrossRefGoogle Scholar
  8. 8.
    Venneri, F., Costanzo, S., Di Massa, G.: Design and validation of a reconfigurable single varactor-tuned reflectarray. IEEE Trans. Antennas Propag. 61(2), 635–645 (2013)CrossRefGoogle Scholar
  9. 9.
    Venneri, F., Costanzo, S., Di Massa, G.: Design of a reconfigurable reflectarray unit cell for wide angle beam-steering radar applications. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 1007–1013. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Giannini, F., Sorrentino, R., Vrba, J.: Planar Circuit Analysis of Microstrip radial stub. IEEE Trans. on Microwave Theory and Technique 32(12), 1652–1655 (1984)CrossRefGoogle Scholar
  11. 11.
    Sorrentino, R., Roselli, L.: A new simple and accurate formula for microstrip radial stub. IEEE Microwave and Guided Letters 2(12), 480–482 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sandra Costanzo
    • 1
    Email author
  • Francesca Venneri
    • 1
  • Antonio Raffo
    • 1
  • Giuseppe Di Massa
    • 1
  • Pasquale Corsonello
    • 1
  1. 1.DIMES – University of CalabriaRendeItaly

Personalised recommendations