Skip to main content

Optogenetics and Deep Brain Stimulation Neurotechnologies

  • Chapter
Cognitive Enhancement

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 228))

Abstract

Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson VC, Burchiel KJ et al (2005) Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 62(4):554–560

    Article  PubMed  Google Scholar 

  • Bamann C, Gueta R et al (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49(2):267–278

    Article  CAS  PubMed  Google Scholar 

  • Bekar L, Libionka W et al (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Schoenenberger P et al (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108(18):7595–7600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berndt A, Lee SY et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344(6182):420–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein JG, Han X et al (2008) Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc Soc Photo Opt Instrum Eng 6854:68540H

    Google Scholar 

  • Bernstein JG, Garrity PA et al (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22(1):61–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boraud T, Brown P et al (2005) Oscillations in the basal ganglia: the good, the bad, and the unexpected. In: Bolam JP, Ingham CA, Magill PJ (eds) The basal ganglia VIII, Vol 56. Springer, New York, pp 1–24

    Google Scholar 

  • Boyden ES, Zhang F et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Oliviero A et al (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038

    CAS  PubMed  Google Scholar 

  • Cavanaugh J, Monosov IE et al (2012) Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76(5):901–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen TW, Wardill TJ et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chow BY, Han X et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chow BY, Han X et al (2012) Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res 196:49–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuong AS, Miri ML et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17(8):1123–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doroudchi MM, Greenberg KP et al (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 19(7):1220–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dostrovsky JO, Levy R et al (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84(1):570–574

    CAS  PubMed  Google Scholar 

  • Foffani G, Ardolino G et al (2006) Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease. Brain Res Bull 69(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Gunaydin LA, Yizhar O et al (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–392

    Article  CAS  PubMed  Google Scholar 

  • Han X (2012a) In vivo application of optogenetics for neural circuit analysis. ACS Chem Neurosci 3(8):577–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han X (2012b) Optogenetics in the nonhuman primate. Prog Brain Res 196:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299

    Article  PubMed Central  PubMed  Google Scholar 

  • Han X, Qian X et al (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62(2):191–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han X, Chow BY et al (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Knopfel T, Boyden ES (eds) (2012) Optogenetics: tools for controlling and monitoring neuronal activity, Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  • Kuhn AA, Kempf F et al (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173

    Article  CAS  PubMed  Google Scholar 

  • Kuhn AA, Tsui A et al (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215(2):380–387

    Article  PubMed  Google Scholar 

  • Lehmkuhle MJ, Bhangoo SS et al (2009) The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat. J Neurophysiol 102(3):1811–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy R, Hutchison WD et al (2000) High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci 20(20):7766–7775

    CAS  PubMed  Google Scholar 

  • Levy R, Ashby P et al (2002a) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(Pt 6):1196–1209

    Article  PubMed  Google Scholar 

  • Levy R, Hutchison WD et al (2002b) Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci 22(7):2855–2861

    CAS  PubMed  Google Scholar 

  • Liu X, Ramirez S et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Madisen L, Mao T et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miesenbock G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mobley J, Vo-Dinh T (2003) Optical properties of tissue. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC, Boca Raton, FL, pp 1–72

    Google Scholar 

  • Nagel G, Szellas T et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100(24):13940–13945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233(39):149–152

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70(10):2853–2857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priori A, Foffani G et al (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189(2):369–379

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(Pt 10):2240–2249

    Article  CAS  PubMed  Google Scholar 

  • Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silberstein P, Pogosyan A et al (2005) Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(Pt 6):1277–1291

    Article  PubMed  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14(11):480–487

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL, Yang CS et al (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    Article  CAS  PubMed  Google Scholar 

  • Tsien JZ, Chen DF et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87(7):1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Uc EY, Follett KA (2007) Deep brain stimulation in movement disorders. Semin Neurol 27(2):170–182

    Article  PubMed  Google Scholar 

  • Volkmann J, Moro E et al (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 21(Suppl 14):S284–S289

    Article  PubMed  Google Scholar 

  • Waehler R, Russell SJ et al (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–587

    Article  CAS  PubMed  Google Scholar 

  • Weinberger M, Hutchison WD et al (2009a) Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? Exp Neurol 219(1):58–61

    Article  PubMed  Google Scholar 

  • Weinberger M, Hutchison WD et al (2009b) Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J Neurophysiol 101(2):789–802

    Article  CAS  PubMed  Google Scholar 

  • Wells J, Kao C et al (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506

    Article  PubMed  Google Scholar 

  • Welter ML, Houeto JL et al (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61(1):89–96

    Article  PubMed  Google Scholar 

  • Wietek J, Wiegert JS et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Tijssen M et al (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125(Pt 7):1558–1569

    Article  PubMed  Google Scholar 

  • Wingeier B, Tcheng T et al (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197(1):244–251

    Article  PubMed  Google Scholar 

  • Yizhar O, Fenno LE et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang LP et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Vierock J et al (2011) The microbial opsin family of optogenetic tools. Cell 147(7):1446–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao S, Cunha C et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36(1–4):141–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zorzos AN, Dietrich A et al (2009) Light-proof neural recording electrodes. In: Poster presented at 39th society for neuroscience annual meeting, Chicago, 17–21 Oct 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kondabolu, K., Kowalski, M.M., Roberts, E.A., Han, X. (2015). Optogenetics and Deep Brain Stimulation Neurotechnologies. In: Kantak, K., Wettstein, J. (eds) Cognitive Enhancement. Handbook of Experimental Pharmacology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-16522-6_15

Download citation

Publish with us

Policies and ethics