Skip to main content

Non-pharmacological Approaches to Cognitive Enhancement

  • Chapter
Book cover Cognitive Enhancement

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 228))

Abstract

Pharmaceuticals and medical devices hold the promise of enhancing brain function, not only of those suffering from neurodevelopmental, neuropsychiatric or neurodegenerative illnesses, but also of healthy individuals. However, a number of lifestyle interventions are proven cognitive enhancers, improving attention, problem solving, reasoning, learning and memory or even mood. Several of these interventions, such as physical exercise, cognitive, mental and social stimulation, may be described as environmental enrichments of varying types. Use of these non-pharmacological cognitive enhancers circumvents some of the ethical considerations associated with pharmaceutical or technological cognitive enhancement, being low in cost, available to the general population and presenting low risk to health and well-being. In this chapter, there will be particular focus on the effects of exercise and enrichment on learning and memory and the evidence supporting their efficacy in humans and in animal models will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    CAS  PubMed  Google Scholar 

  • Albeck DS, Sano K, Prewitt GE, Dalton L (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res 168:345–348

    PubMed  Google Scholar 

  • American Time Use Study, U.S. Bureau of Labor Statistics (2013) http://www.bls.gov/news.release/atus.nr0.htm

  • Anstey KJ, Matters B, Brown AK, Lord SR (2000) Normative data on neuropsychological tests for very old adults living in retirement villages and hostels. Clin Neuropsychol 14:309–317

    CAS  PubMed  Google Scholar 

  • Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, Yaffe K (2013a) The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med 173:797–804

    PubMed  Google Scholar 

  • Barnes JN, Taylor JL, Kluck BN, Johnson CP, Joyner MJ (2013b) Cerebrovascular reactivity is associated with maximal aerobic capacity in healthy older adults. J Appl Physiol (1985) 114:1383–1387

    CAS  Google Scholar 

  • Bechara RG, Kelly AM (2013) Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav Brain Res 245:96–100

    CAS  PubMed  Google Scholar 

  • Bechara RG, Lyne R, Kelly AM (2014) BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res 275:297–306

    CAS  PubMed  Google Scholar 

  • Bekinschtein P, Cammarota M, Medina JH (2014) BDNF and memory processing. Neuropharmacology 76:677–683

    CAS  PubMed  Google Scholar 

  • Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167:588–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bindu B, Alladi PA, Mansooralikhan BM, Srikumar BN, Raju TR, Kutty BM (2007) Short-term exposure to an enriched environment enhances dendritic branching but not brain-derived neurotrophic factor expression in the hippocampus of rats with ventral subicular lesions. Neuroscience 144:412–423

    CAS  PubMed  Google Scholar 

  • Birch AM, Kelly AM (2013) Chronic intracerebroventricular infusion of nerve growth factor improves recognition memory in the rat. Neuropharmacology 75:255–261

    CAS  PubMed  Google Scholar 

  • Birch AM, Mcgarry NB, Kelly AM (2013) Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus 23(6):437–450

    CAS  PubMed  Google Scholar 

  • Bramham CR, Panja D (2014) BDNF regulation of synaptic structure, function, and plasticity. Neuropharmacology 76 Pt C:601–602

    PubMed  Google Scholar 

  • Brenes JC, Padilla M, Fornaguera J (2009) A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav Brain Res 197:125–137

    CAS  PubMed  Google Scholar 

  • Brown J, Cooper-Kuhn CM, Kempermann G, van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    PubMed  Google Scholar 

  • Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317

    CAS  PubMed  Google Scholar 

  • Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    CAS  PubMed  Google Scholar 

  • Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101

    CAS  PubMed  Google Scholar 

  • Cho HC, Kim J, Kim S, Son YH, Lee N, Jung SH (2012) The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO(2)max performance in healthy college men. Neurosci Lett 519:78–83

    CAS  PubMed  Google Scholar 

  • Cian C, Barraud PA, Melin B, Raphel C (2001) Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol 42:243–251

    CAS  PubMed  Google Scholar 

  • Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS (2009) Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 19:937–950

    PubMed  PubMed Central  Google Scholar 

  • Colcombe SJ, Kramer AF, Erickson KI, Scalf P, Mcauley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A 101:3316–3321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29:10883–10889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (2013) Exercise for depression. Cochrane Database Syst Rev 9, CD004366

    PubMed  Google Scholar 

  • Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A 107:2367–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crosnoe R, Leventhal T, Wirth RJ, Pierce KM, Pianta RC, NICHD Early Child Care Research Network (2010) Family socioeconomic status and consistent environmental stimulation in early childhood. Child Dev 81:972–987

    PubMed  PubMed Central  Google Scholar 

  • Dickinson D, Tenhula W, Morris S, Brown C, Peer J, Spencer K, Li L, Gold JM, Bellack AS (2010) A randomized, controlled trial of computer-assisted cognitive remediation for schizophrenia. Am J Psychiatry 167:170–180

    PubMed  Google Scholar 

  • Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, Portela LV (2005) Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res 1065:20–25

    CAS  PubMed  Google Scholar 

  • Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140:823–833

    CAS  PubMed  Google Scholar 

  • Ding Q, Ying Z, Gomez-Pinilla F (2011) Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 192:773–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Nakagawa S, Malberg J (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25:836–844

    CAS  PubMed  Google Scholar 

  • Earhart GM (2013) Dynamic control of posture across locomotor tasks. Mov Disord 28:1501–1508

    PubMed  PubMed Central  Google Scholar 

  • Ebersbach G, Ebersbach A, Gandor F, Wegner B, Wissel J, Kupsch A (2014) Impact of physical exercise on reaction time in patients with Parkinson’s disease-data from the Berlin BIG Study. Arch Phys Med Rehabil 95:996–999

    PubMed  Google Scholar 

  • Ekstrand J, Hellsten J, Tingstrom A (2008) Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett 442:203–207

    CAS  PubMed  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, Mcauley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039

    PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, Mclaren M, Pence BD, Martin SA, Vieira VJ, Woods JA, Mcauley E, Kramer AF (2010) Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 30:5368–5375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, Mcauley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31:84–92

    PubMed  PubMed Central  Google Scholar 

  • Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo CJ, Palmer TD (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18:2803–2812

    PubMed  Google Scholar 

  • Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ (2005) Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res 134:170–179

    CAS  PubMed  Google Scholar 

  • Farina N, Rusted J, Tabet N (2014) The effect of exercise interventions on cognitive outcome in Alzheimer’s disease: a systematic review. Int Psychogeriatr 26:9–18

    PubMed  Google Scholar 

  • Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79

    CAS  PubMed  Google Scholar 

  • Ferrara N (2009) VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20:158–163

    CAS  PubMed  Google Scholar 

  • Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734

    CAS  PubMed  Google Scholar 

  • Frazzitta G, Maestri R, Ghilardi MF, Riboldazzi G, Perini M, Bertotti G, Boveri N, Buttini S, Lombino FL, Uccellini D, Turla M, Pezzoli G, Comi C (2014) Intensive rehabilitation increases BDNF serum levels in parkinsonian patients: a randomized study. Neurorehabil Neural Repair 28:163–168

    PubMed  Google Scholar 

  • Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87:728–734

    CAS  PubMed  Google Scholar 

  • Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    CAS  PubMed  Google Scholar 

  • Galani R, Berthel MC, Lazarus C, Majchrzak M, Barbelivien A, Kelche C, Cassel JC (2007) The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry. Neurobiol Learn Mem 88:1–10

    CAS  PubMed  Google Scholar 

  • Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA (2004) Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 77:209–220

    CAS  PubMed  Google Scholar 

  • Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA (2010) Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol 67:80–86

    PubMed  PubMed Central  Google Scholar 

  • Gobbo OL, O’Mara SM (2004) Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res 152:231–241

    CAS  PubMed  Google Scholar 

  • Goekint M, Heyman E, Roelands B, Njemini R, Bautmans I, Mets T, Meeusen R (2008) No influence of noradrenaline manipulation on acute exercise-induced increase of brain-derived neurotrophic factor. Med Sci Sports Exerc 40:1990–1996

    CAS  PubMed  Google Scholar 

  • Goekint M, Roelands B, De Pauw K, Knaepen K, Bos I, Meeusen R (2010) Does a period of detraining cause a decrease in serum brain-derived neurotrophic factor? Neurosci Lett 486:146–149

    CAS  PubMed  Google Scholar 

  • Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann KM, Heesen C (2003) Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 138:99–105

    CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F, Hillman C (2013) The influence of exercise on cognitive abilities. Compr Physiol 3:403–428

    PubMed  PubMed Central  Google Scholar 

  • Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28:2278–2287

    PubMed  PubMed Central  Google Scholar 

  • Grego F, Vallier JM, Collardeau M, Bermon S, Ferrari P, Candito M, Bayer P, Magnie MN, Brisswalter J (2004) Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neurosci Lett 364:76–80

    CAS  PubMed  Google Scholar 

  • Grego F, Vallier JM, Collardeau M, Rousseu C, Cremieux J, Brisswalter J (2005) Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise. Int J Sports Med 26:27–33

    CAS  PubMed  Google Scholar 

  • Gregoire CA, Bonenfant D, Le Nguyen A, Aumont A, Fernandes KJ (2014) Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS One 9:e86237

    PubMed  PubMed Central  Google Scholar 

  • Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19:973–980

    CAS  PubMed  Google Scholar 

  • Griffin EW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104:934–941

    CAS  PubMed  Google Scholar 

  • Harburger LL, Lambert TJ, Frick KM (2007a) Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behav Brain Res 185:43–48

    PubMed  PubMed Central  Google Scholar 

  • Harburger LL, Nzerem CK, Frick KM (2007b) Single enrichment variables differentially reduce age-related memory decline in female mice. Behav Neurosci 121:679–688

    PubMed  Google Scholar 

  • Heath GW, Parra DC, Sarmiento OL, Andersen LB, Owen N, Goenka S, Montes F, Brownson RC, Lancet Physical Activity Series Working Group (2012) Evidence-based intervention in physical activity: lessons from around the world. Lancet 380:272–281

    PubMed  Google Scholar 

  • Heyn P, Abreu BC, Ottenbacher KJ (2004) The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 85:1694–1704

    PubMed  Google Scholar 

  • Hindle JV, Petrelli A, Clare L, Kalbe E (2013) Nonpharmacological enhancement of cognitive function in Parkinson’s disease: a systematic review. Mov Disord 28:1034–1049

    PubMed  Google Scholar 

  • Holwerda TJ, Deeg DJ, Beekman AT, van Tilburg TG, Stek ML, Jonker C, Schoevers RA (2014) Feelings of loneliness, but not social isolation, predict dementia onset: results from the Amsterdam Study of the Elderly (AMSTEL). J Neurol Neurosurg Psychiatry 85:135–142

    PubMed  Google Scholar 

  • Hopkins ME, Bucci DJ (2010a) BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem 94:278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins ME, Bucci DJ (2010b) Interpreting the effects of exercise on fear conditioning: the influence of time of day. Behav Neurosci 124:868–872

    PubMed  Google Scholar 

  • Huang AM, Jen CJ, Chen HF, Yu L, Kuo YM, Chen HI (2006) Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm 113:803–811

    CAS  PubMed  Google Scholar 

  • Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12:110–119

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, Bernstein MA, Gunter JL, Pankratz VS, Aisen PS, Weiner MW, Petersen RC, Shaw LM, Trojanowski JQ, Knopman DS, Alzheimer’s Disease Neuroimaging Initiative (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133:3336–3348

    PubMed  PubMed Central  Google Scholar 

  • Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    CAS  PubMed  Google Scholar 

  • Keilhoff G, Fusar-Poli P, Becker A (2012) Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012:832757

    PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Gage FH (1999) Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 9:321–332

    CAS  PubMed  Google Scholar 

  • Kennard JA, Woodruff-Pak DS (2012) A comparison of low- and high-impact forced exercise: effects of training paradigm on learning and memory. Physiol Behav 106:423–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr AL, Steuer EL, Pochtarev V, Swain RA (2010) Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 171:214–226

    CAS  PubMed  Google Scholar 

  • Kobilo T, Liu QR, Gandhi K, Mughal M, Shaham Y, van Praag H (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18:605–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer AF, Erickson KI (2007a) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11:342–348

    PubMed  Google Scholar 

  • Kramer AF, Erickson KI (2007b) Effects of physical activity on cognition, well-being, and brain: human interventions. Alzheimers Dement 3:S45–S51

    PubMed  Google Scholar 

  • Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513

    PubMed  Google Scholar 

  • Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC (2012) Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 33(828):e1–e17

    Google Scholar 

  • Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24

    CAS  PubMed  Google Scholar 

  • Larson EB, Wang L, Bowen JD, Mccormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81

    PubMed  Google Scholar 

  • Laurin D, Verreault R, Lindsay J, Macpherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58:498–504

    CAS  PubMed  Google Scholar 

  • Laursen TM, Munk-Olsen T, Vestergaard M (2012) Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr Opin Psychiatry 25:83–88

    PubMed  Google Scholar 

  • Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300:1027–1037

    CAS  PubMed  Google Scholar 

  • Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31:159–168

    PubMed  Google Scholar 

  • Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H (2010) When neurogenesis encounters aging and disease. Trends Neurosci 33:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465

    CAS  PubMed  Google Scholar 

  • Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380:219–229

    PubMed  PubMed Central  Google Scholar 

  • Lessmann V (1998) Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. Gen Pharmacol 31:667–674

    CAS  PubMed  Google Scholar 

  • Lista I, Sorrentino G (2010) Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 30:493–503

    CAS  PubMed  Google Scholar 

  • Mahncke HW, Connor BB, Appelman J, Ahsanuzddin ON, Hardy JL, Wood RA, Joyce NM, Boniske T, Atkins SM, Merzenich MM (2006) Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci U S A 103:12523–12528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mammen G, Faulkner G (2013) Physical activity and the prevention of depression: a systematic review of prospective studies. Am J Prev Med 45:649–657

    PubMed  Google Scholar 

  • Mandolesi L, De Bartolo P, Foti F, Gelfo F, Federico F, Leggio MG, Petrosini L (2008) Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. J Alzheimers Dis 15:11–28

    PubMed  Google Scholar 

  • Marais L, Stein DJ, Daniels WM (2009) Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis 24:587–597

    CAS  PubMed  Google Scholar 

  • Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418

    CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molteni R, Ying Z, Gomez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16:1107–1116

    PubMed  Google Scholar 

  • Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88

    CAS  PubMed  Google Scholar 

  • Naismith SL, Mowszowski L, Diamond K, Lewis SJ (2013) Improving memory in Parkinson’s disease: a healthy brain ageing cognitive training program. Mov Disord 28:1097–1103

    PubMed  Google Scholar 

  • Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470:113–117

    CAS  PubMed  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726:49–56

    CAS  PubMed  Google Scholar 

  • NICE Guidelines (2009) http://www.nice.org.uk/guidance/cg90/evidence

  • Nithianantharajah J, Hannan AJ (2009) The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 89:369–382

    PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2011) Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 35:331–339

    CAS  PubMed  Google Scholar 

  • Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, Sekiguchi A, Kotozaki Y, Tsukiura T, Yomogida Y, Kawashima R (2012) Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. PLoS One 7:e29676

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Callaghan RM, Ohle R, Kelly AM (2007) The effects of forced exercise on hippocampal plasticity in the rat: a comparison of LTP, spatial- and non-spatial learning. Behav Brain Res 176:362–366

    PubMed  Google Scholar 

  • O’Callaghan RM, Griffin EW, Kelly AM (2009) Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus. Hippocampus 19:1019–1029

    PubMed  Google Scholar 

  • Oertel-Knochel V, Mehler P, Thiel C, Steinbrecher K, Malchow B, Tesky V, Ademmer K, Prvulovic D, Banzer W, Zopf Y, Schmitt A, Hänsel F (2014) Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 264(7):589–604

    PubMed  Google Scholar 

  • Olafsdottir S, Berg C, Eiben G, Lanfer A, Reisch L, Ahrens W, Kourides Y, Molnar D, Moreno LA, Siani A, Veidebaum T, Lissner L (2014) Young children’s screen activities, sweet drink consumption and anthropometry: results from a prospective European study. Eur J Clin Nutr 68:223–228

    CAS  PubMed  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250–260

    CAS  PubMed  Google Scholar 

  • Ota KT, Duman RS (2013) Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 57:28–37

    CAS  PubMed  Google Scholar 

  • Ozbulut O, Genc A, Bagcioglu E, Coskun KS, Acar T, Alkoc OA, Karabacak H, Sener U, Ucok K (2013) Evaluation of physical fitness parameters in patients with schizophrenia. Psychiatry Res 210:806–811

    PubMed  Google Scholar 

  • Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Muller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67:133–143

    PubMed  Google Scholar 

  • Pang TY, Hannan AJ (2013) Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology 64:515–528

    CAS  PubMed  Google Scholar 

  • Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 104:5638–5643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petzinger GM, Fisher BE, Mcewen S, Beeler JA, Walsh JP, Jakowec MW (2013) Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 12:716–726

    PubMed  PubMed Central  Google Scholar 

  • Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA (2009) The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc 41:927–934

    PubMed  Google Scholar 

  • Pothakos K, Kurz MJ, Lau YS (2009) Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci 10:6

    PubMed  PubMed Central  Google Scholar 

  • Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37:765–782

    PubMed  Google Scholar 

  • Quirie A, Hervieu M, Garnier P, Demougeot C, Mossiat C, Bertrand N, Martin A, Marie C, Prigent-Tessier A (2012) Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 7:e44218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069

    CAS  PubMed  Google Scholar 

  • Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689

    PubMed  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    CAS  PubMed  Google Scholar 

  • Robert PH, Berr C, Volteau M, Bertogliati-Fileau C, Benoit M, Guerin O, Sarazin M, Legrain S, Dubois B, PréAL Study Group (2008) Importance of lack of interest in patients with mild cognitive impairment. Am J Geriatr Psychiatry 16:770–776

    PubMed  Google Scholar 

  • Rojas Vega S, Struder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W (2006) Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res 1121:59–65

    CAS  PubMed  Google Scholar 

  • Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    CAS  PubMed  Google Scholar 

  • Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4:705–711

    PubMed  Google Scholar 

  • Russo-Neustadt AA, Chen MJ (2005) Brain-derived neurotrophic factor and antidepressant activity. Curr Pharm Des 11:1495–1510

    CAS  PubMed  Google Scholar 

  • Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP (2001) Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 120:87–95

    CAS  PubMed  Google Scholar 

  • Schiffer T, Schulte S, Hollmann W, Bloch W, Struder HK (2009) Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res 41:250–254

    CAS  PubMed  Google Scholar 

  • Schmidt-Kassow M, Deusser M, Thiel C, Otterbein S, Montag C, Reuter M, Banzer W, Kaiser J (2013) Physical exercise during encoding improves vocabulary learning in young female adults: a neuroendocrinological study. PLoS One 8:e64172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmiedek F, Lovden M, Lindenberger U (2010) Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front Aging Neurosci 2:27

    PubMed  PubMed Central  Google Scholar 

  • Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298:R372–R377

    CAS  PubMed  Google Scholar 

  • Shankar A, Hamer M, McMunn A, Steptoe A (2013) Social isolation and loneliness: relationships with cognitive function during 4 years of follow-up in the English longitudinal study of ageing. Psychosom Med 75:161–170

    PubMed  Google Scholar 

  • Sharma HS, Cervos-Navarro J, Dey PK (1991) Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci Res 10:211–221

    CAS  PubMed  Google Scholar 

  • Sigwalt AR, Budde H, Helmich I, Glaser V, Ghisoni K, Lanza S, Cadore EL, Lhullier FL, de Bem AF, Hohl A, de Matos FJ, de Oliveira PA, Prediger RD, Guglielmo LG, Latini A (2011) Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience 192:661–674

    CAS  PubMed  Google Scholar 

  • Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, Zelinski EM (2009) A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J Am Geriatr Soc 57:594–603

    PubMed  PubMed Central  Google Scholar 

  • Song MR, Lee YS, Baek JD, Miller M (2012) Physical activity status in adults with depression in the National Health and Nutrition Examination Survey, 2005–2006. Public Health Nurs 29:208–217

    PubMed  Google Scholar 

  • Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, Mcewen BS, Nishijima T (2007) BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358:961–967

    CAS  PubMed  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speisman RB, Kumar A, Rani A, Pastoriza JM, Severance JE, Foster TC, Ormerod BK (2013) Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol Aging 34:263–274

    PubMed  PubMed Central  Google Scholar 

  • Stranahan AM, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17:1017–1022

    PubMed  PubMed Central  Google Scholar 

  • Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046

    CAS  PubMed  Google Scholar 

  • Takahashi H, Sassa T, Shibuya T, Kato M, Koeda M, Murai T, Matsuura M, Asai K, Suhara T, Okubo Y (2012) Effects of sports participation on psychiatric symptoms and brain activations during sports observation in schizophrenia. Transl Psychiatry 2:e96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SW, Chu E, Hui T, Helmeste D, Law C (2008) Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett 431:62–65

    CAS  PubMed  Google Scholar 

  • Tang K, Xia FC, Wagner PD, Breen EC (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tardif S, Simard M (2011) Cognitive stimulation programs in healthy elderly: a review. Int J Alzheimers Dis 2011:378934

    PubMed  PubMed Central  Google Scholar 

  • Tomporowski PD (2003) Effects of acute bouts of exercise on cognition. Acta Psychol (Amst) 112:297–324

    Google Scholar 

  • Tomporowski PD, Lambourne K, Okumura MS (2011) Physical activity interventions and children’s mental function: an introduction and overview. Prev Med 52(Suppl 1):S3–S9

    PubMed  PubMed Central  Google Scholar 

  • Toscano-Silva M, da Silva Gomes S, Scorza FA, Bonvent JJ, Cavalheiro EA, Arida RM (2010) Hippocampal mossy fiber sprouting induced by forced and voluntary physical exercise. Physiol Behav 101:302–308

    CAS  PubMed  Google Scholar 

  • Trejo JL, Llorens-Martin MV, Torres-Aleman I (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 37:402–411

    CAS  PubMed  Google Scholar 

  • Tuon T, Valvassori SS, Lopes-Borges J, Luciano T, Trom CB, Silva LA, Quevedo J, Souza CT, Lira FS, Pinho RA (2012) Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience 227:305–312

    CAS  PubMed  Google Scholar 

  • Uc EY, Doerschug KC, Magnotta V, Dawson JD, Thomsen TR, Kline JN, Rizzo M, Newman SR, Mehta S, Grabowski TJ, Bruss J, Blanchette DR, Anderson SW, Voss MW, Kramer AF, Darling WG (2014) Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology 83(5):413–425

    PubMed  Google Scholar 

  • Valero J, Espana J, Parra-Damas A, Martin E, Rodriguez-Alvarez J, Saura CA (2011) Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw, Ind) transgenic mice. PLoS One 6:e16832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Borght K, Kobor-Nyakas DE, Klauke K, Eggen BJ, Nyakas C, Van der Zee EA, Meerlo P (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19:928–936

    PubMed  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    PubMed  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    PubMed  PubMed Central  Google Scholar 

  • Vancampfort D, Probst M, De Hert M, Soundy A, Stubbs B, Stroobants M, De Herdt A (2014) Neurobiological effects of physical exercise in schizophrenia: a systematic review. Disabil Rehabil 36(21):1749–1754

    PubMed  Google Scholar 

  • Vaynman S, Gomez-Pinilla F (2006) Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res 84:699–715

    CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004a) Exercise induces BDNF and synapsin I to specific hippocampal subfields. J Neurosci Res 76:356–362

    CAS  PubMed  Google Scholar 

  • Vaynman S, Ying Z, Gomez-Pinilla F (2004b) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590

    PubMed  Google Scholar 

  • Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, Ambrose AF, Sliwinski M, Buschke H (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348:2508–2516

    PubMed  Google Scholar 

  • Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17:525–544

    PubMed  Google Scholar 

  • Watson P, Black KE, Clark SC, Maughan RJ (2006) Exercise in the heat: effect of fluid ingestion on blood-brain barrier permeability. Med Sci Sports Exerc 38:2118–2124

    PubMed  Google Scholar 

  • Wilson RS, Barnes LL, de Leon Mendes CF, Aggarwal NT, Schneider JS, Bach J, Pilat J, Beckett LA, Arnold SE, Evans DA, Bennett DA (2002a) Depressive symptoms, cognitive decline, and risk of AD in older persons. Neurology 59:364–370

    PubMed  Google Scholar 

  • Wilson RS, Bennett DA, Bienias JL, Aggarwal NT, de Leon Mendes CF, Morris MC, Schneider JA, Evans DA (2002b) Cognitive activity and incident AD in a population-based sample of older persons. Neurology 59:1910–1914

    CAS  PubMed  Google Scholar 

  • Wilson RS, Mendes De Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002c) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287:742–748

    PubMed  Google Scholar 

  • Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87:597–609

    PubMed  Google Scholar 

  • Wolf SA, Melnik A, Kempermann G (2011) Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun 25:971–980

    CAS  PubMed  Google Scholar 

  • Wu CW, Chang YT, Yu L, Chen HI, Jen CJ, Wu SY, Lo CP, Kuo YM (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol (1985) 105:1585–1594

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Áine M. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kelly, Á.M. (2015). Non-pharmacological Approaches to Cognitive Enhancement. In: Kantak, K., Wettstein, J. (eds) Cognitive Enhancement. Handbook of Experimental Pharmacology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-16522-6_14

Download citation

Publish with us

Policies and ethics