Skip to main content

Interpretability of Music Classification as a Criterion for Evolutionary Multi-objective Feature Selection

  • Conference paper
  • First Online:
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9027))

Abstract

The development of numerous audio signal characteristics led to an increase of classification performance for automatic categorisation of music audio recordings. Unfortunately, models built with such low-level descriptors lack of interpretability. Musicologists and listeners can not learn musically meaningful properties of genres, styles, composers, or personal preferences. On the other side, there are new algorithms for the mining of interpretable features from music data: instruments, moods and melodic properties, tags and meta data from the social web, etc. In this paper, we propose an approach how evolutionary multi-objective feature selection can be applied for a systematic maximisation of interpretability without a limitation to the usage of only interpretable features. We introduce a simple hypervolume based measure for the evaluation of trade-off between classification performance and interpretability and discuss how the results of our study may help to search for particularly relevant high-level descriptors in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anglade, A., Benetos, E., Mauch, M., Dixon, S.: Improving music genre classification using automatically induced harmony rules. J. New Music Res. 39(4), 349–361 (2010)

    Article  Google Scholar 

  2. Arabi A.F., Lu, G.: Enhanced polyphonic music genre classification using high level features. In: Proceedings of the IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 101–106 (2009)

    Google Scholar 

  3. Van Balen, J., Bountouridis, D., Wiering, F., Veltkamp, R.: Cognition-inspired descriptors for scalable cover song retrieval. In: Proceedings of 15th International Society for Music Information Retrieval Conference, pp. 379–384 (2014)

    Google Scholar 

  4. Berenzweig, A., Ellis, D.P.W., Lawrence, S.: Anchor space for classification and similarity measurement of music. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 29–32 (2003)

    Google Scholar 

  5. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Sci. Res. 181(3), 1653–1669 (2007)

    MATH  Google Scholar 

  6. Bischl, B., Vatolkin, I., Preuss, M.: Selecting small audio feature sets in music classification by means of asymmetric mutation. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 314–323. Springer, Heidelberg (2010)

    Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Ellis, K., Coviello, E., Chan, A., Lanckriet, G.: A bag of systems representation for music auto-tagging. IEEE Trans. Audio Speech Lang. Process. 21(12), 2554–2569 (2013)

    Article  Google Scholar 

  9. Fernández, F., Chávez, F.: Fuzzy rule based system ensemble for music genre classification. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 84–95. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Herlands, W., Der, R., Greenberg, Y., Levin, S.: A machine learning approach to musically meaningful homogeneous style classification. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 276–282 (2014)

    Google Scholar 

  11. Kostek, B., Plewa, M.: Parametrisation and correlation analysis applied to music mood classification. Int. J. Comput. Intell. Stud. 2(1), 4–25 (2013)

    Article  Google Scholar 

  12. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recogn. 33(1), 25–41 (2000)

    Article  Google Scholar 

  13. Lidy, L., Rauber, A., Pertusa, A., Iñesta, J.M.: Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), pp. 61–66 (2007)

    Google Scholar 

  14. Mauch, M., Levy, M.: Structural change on multiple time scales as a correlate of musical complexity. In: Proceedings 12th International Society for Music Information Retrieval Conference (ISMIR), pp. 489–494 (2011)

    Google Scholar 

  15. McKay, C.: Automatic Music Classification with jMIR. Ph.D. thesis, Department of Music Research, Schulich School of Music, McGill University (2010)

    Google Scholar 

  16. McKay, C., Burgoyne, J.A., Hockman, J., Smith, J.B.L., Vigliensoni, G., Fujinaga, I.: Evaluating the genre classification performance of lyrical features relative to audio, symbolic and cultural features. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), pp. 213–218 (2010)

    Google Scholar 

  17. Mierswa, I., Morik, K.: Automatic feature extraction for classifying audio data. Mach. Learn. J. 58(2–3), 127–149 (2005)

    Article  MATH  Google Scholar 

  18. Miranda, E.R., Biles, J.A.: Evolutionary Computer Music. Springer, London (2007)

    Book  Google Scholar 

  19. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.A.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  20. Pachet, F., Zils, A.: Evolving automatically high-level music descriptors from acoustic signals. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 42–53. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Panda, R., Rocha, B., Paiva, R.P.: Dimensional music emotion recognition: combining standard and melodic audio features. In: Proceedings of the 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pp. 583–593 (2013)

    Google Scholar 

  22. Rötter, G., Vatolkin, I., Weihs, C.: Computational prediction of high-level descriptors of music personal categories. In: Lausen, B., van den Poel, D., Ultsch, A. (eds.) Algorithms from and for Nature and Life, pp. 529–537. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Vatolkin, I.: Improving Supervised Music Classification by Means of Multi-Objective Evolutionary Feature Selection. Ph.D. thesis, TU Dortmund (2013)

    Google Scholar 

  24. Zanoni, M., Ciminieri, D., Sarti, A. Tubaro, S.: Searching for dominant high-level features for music information retrieval. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 2025–2029 (2012)

    Google Scholar 

  25. Zhu, J., Xue, X., Lu, H.: Musical genre classification by instrumental features. In: Proceedings of the 2004 International Computer Music Conference (ICMC), pp. 580–583 (2004)

    Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vatolkin .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 1.
figure 1

Non-dominated fronts of feature subsets - Part I. Circles: C4.5, rectangles: random forest, diamonds: naive Bayes, triangles: support vector machines.

Fig. 2.
figure 2

Non-dominated fronts of feature subsets - Part II.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vatolkin, I., Rudolph, G., Weihs, C. (2015). Interpretability of Music Classification as a Criterion for Evolutionary Multi-objective Feature Selection. In: Johnson, C., Carballal, A., Correia, J. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2015. Lecture Notes in Computer Science(), vol 9027. Springer, Cham. https://doi.org/10.1007/978-3-319-16498-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16498-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16497-7

  • Online ISBN: 978-3-319-16498-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics