Skip to main content

Classical Nonlinear Beam Theories

  • Chapter
  • First Online:
Geometric Continuum Mechanics and Induced Beam Theories

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 75))

  • 1497 Accesses

Abstract

Classical nonlinear beams from the point of view of an induced theory are continuous bodies with a constrained position field which are described by the motion of a centerline and the motion of plane rigid cross sections attached to every point at the centerline. This restricted kinematics allows to determine resultant forces at each cross section and to reduce the equations of motion of a three-dimensional continuous body to a partial differential equation with only one spatial variable. The present chapter is partly based on the publication of Eugster et al. [1]. First, in Sect. 5.1, the kinematical assumptions are stated. Subsequently, in Sect. 5.2, the virtual work contributions of the internal forces, the inertia forces and the external forces are reformulated by the application of the restricted kinematics to the virtual work of the continuous body. In Sects. 5.35.5 we present the generalized constitutive laws of the geometrically nonlinear and elastic theories of Timoshenko, Euler–Bernoulli and Kirchhoff in the form of a semi-induced beam theory. Lastly, Sect. 5.6 closes the chapter with a concise literature survey of numerical implementations of nonlinear classical beam theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Eugster, C. Hesch, P. Betsch, Ch. Glocker, Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    Article  MathSciNet  Google Scholar 

  2. S.P. Timoshenko, LXVI On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6 41(245), 744–746 (1921)

    Article  Google Scholar 

  3. S.P. Timoshenko, X On the transverse vibrations of bars of uniform cross-section. Philos. Mag. Ser. 6 43(253), 125–131 (1922)

    Article  Google Scholar 

  4. P. Ballard, A. Millard, Poutres et Arcs Élastiques. (Les Éditions de l’École Polytechnique 2009)

    Google Scholar 

  5. S.S. Antman, Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, Vol. 107 (Springer, New York, 2005)

    Google Scholar 

  6. E. Reissner, On finite deformations of space-curved beams. Z. für Angew. Math. und Phys. 32, 734–744 (1981)

    Article  MATH  Google Scholar 

  7. J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  8. J.J. Moreau, Fonctionnelles convexes, Séminaire sur les Équations aux Dérivées Partielles, Collège de France, 1966, et Edizioni del Dipartimento di Ingeneria Civile dell’Università di Roma Tor Vergata, Roma, Séminaire Jean Leray (1966)

    Google Scholar 

  9. R.T. Rockafellar, Convex Analysis, Princeton Mathematical Series (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  10. Ch. Glocker, Set-Valued Force Laws, Dynamics of Non-smooth Systems. Lecture Notes in Applied Mechanics, vol. 1 (Springer, Berlin, 2001)

    Google Scholar 

  11. J.C. Simo, L. Vu-Quoc, A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  12. M. Iura, S.N. Atluri, Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput. Struct. 29(5), 875–889 (1988)

    Article  MATH  Google Scholar 

  13. M. Iura, S.N. Atluri, On a consistent theory, and variational formulation of finitely stretched and rotated 3-D space-curved beams. Comput. Mech. 4(2), 73–88 (1988)

    Article  MATH  Google Scholar 

  14. P.M. Pimenta, T. Yojo, Geometrically exact analysis of spatial frames. Appl. Mech. Rev. 46(11), 118–128 (1993)

    Article  Google Scholar 

  15. A. Ibrahimbegović, On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 149(1–4), 49–71 (1997). Containing papers presented at the Symposium on Advances in Computational Mechanics

    Article  MATH  Google Scholar 

  16. F. Gruttmann, R. Sauer, W. Wagner, A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Comput. Methods Appl. Mech. Eng. 160(3), 383–400 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. M.A. Crisfield, G. Jelenić, Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, in Proceedings of Mathematical, Physical and Engineering Sciences, 455 (1983): pp. 1125–1147 (1999)

    Google Scholar 

  18. G. Jelenić, M.A. Crisfield, Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171(1–2), 141–171 (1999)

    Article  MATH  Google Scholar 

  19. I. Romero, F. Armero, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54, 1683–1716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Betsch, P. Steinmann, Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Betsch, P. Steinmann, Constrained dynamics of geometrically exact beams. Comput. Mech. 31, 49–59 (2003)

    Article  MATH  Google Scholar 

  22. P. Betsch, P. Steinmann, A DAE approach to flexible multibody dynamics. Multibody Syst. Dyn. 8, 367–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Armero, I. Romero, Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods. Comput. Mech. 31, 3–26 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Leyendecker, P. Betsch, P. Steinmann, Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput. Methods Appl. Mech. Eng. 195(19–22), 2313–2333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Prathap, G.R. Bhashyam, Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 18(2), 195–210 (1982)

    Article  MATH  Google Scholar 

  26. A. Ibrahimbegović, F. Frey, Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams. Int. J. Numer. Methods Eng. 36(19), 3239–3258 (1993)

    Article  MATH  Google Scholar 

  27. H.A.F.A. Santos, P.M. Pimenta, J.P. Moitinho de Almeida, A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures. Comput. Mech. 48(5), 591–613 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Zupan, M. Saje, Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192(49–50), 5209–5248 (2003)

    Article  MathSciNet  Google Scholar 

  29. D. Zupan, M. Saje, Rotational invariants in finite element formulation of three-dimensional beam theories. Comput. Struct. 82(23–26), 2027–2040 (2004). Computational Structures Technology

    Article  Google Scholar 

  30. P.M. Pimenta, E.M.B. Campello, P. Wriggers, An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput. Mech. 42(5), 715–732 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. H.A.F.A. Santos, P.M. Pimenta, J.P. Moitinho de Almeida, Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int. J. Non-Linear Mech. 45(8), 809–820 (2010)

    Article  Google Scholar 

  32. F. Boyer, D. Primault, Finite element of slender beams in finite transformations: a geometrically exact approach. Int. J. Numer. Methods Eng. 59(5), 669–702 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester, 2009). ISBN 9780470749098

    Book  Google Scholar 

  34. L. Greco, M. Cuomo, B-spline interpolation of Kirchhoff-love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  35. L. Greco, M. Cuomo, Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn., pp. 1–17 (2014)

    Google Scholar 

  36. C. Meier, A. Popp, W.A. Wall, An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)

    Article  MathSciNet  Google Scholar 

  37. F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, J.-L. Lévêque. Super-helices for predicting the dynamics of natural hair, in ACM Transactions on Graphics (Proceedings of the ACM SIGGRAPH ’06 Conference), (ACM, 2006), pp. 1180–1187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Eugster .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eugster, S.R. (2015). Classical Nonlinear Beam Theories. In: Geometric Continuum Mechanics and Induced Beam Theories. Lecture Notes in Applied and Computational Mechanics, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-16495-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16495-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16494-6

  • Online ISBN: 978-3-319-16495-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics