Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 75))

  • 1350 Accesses

Abstract

This chapter introduces the concept of force, states the principle of virtual work of a continuous body, discusses admissible force representations and concludes with the application to classical nonlinear continuum mechanics. In Sect. 3.1, forces are defined as linear functionals on the space of virtual displacements and the principle of virtual work for the continuous body is formulated. Subsequently, the force representation of Segev [1] by smooth tensor measures is introduced. In Sect. 3.2 the applied forces are restricted to a subclass of possible forces and the equations of motion of a continuous body mapped to the Euclidean vector space are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to [9], Proposition 9.20, for a similar representation theorem for functions of the Sobolev space \(W^{1,p}_0(\varOmega )\) on a subset \(\varOmega \subset \mathbb {R}^n\).

  2. 2.

    Notice, symmetry condition does not mean that the two first components of \({\varvec{\pi }}\) are symmetric. Such a statement is meaningless, since both components belong to different vector spaces. Hence, the symmetry condition will include metric information as well as the tangent map \(T\kappa \).

References

  1. R. Segev, Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27(1), 163–170 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Thomson, P.G. Tait, Treatise on Natural Philosophy, vol. 1 (Clarendon Press, Oxford, 1867)

    MATH  Google Scholar 

  3. G.R. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, vol. I (B.G. Teubner, Leipzig, 1876)

    Google Scholar 

  4. W. Noll. The foundations of classical mechanics in the light of recent advances in continuum mechanics, in: The Axiomatic Method, with Special Reference to Geometry and Physics, p. 266–281 (1959)

    Google Scholar 

  5. C. Truesdell, A First Course in Rational Continuum Mechanics (Academic Press, New York, 1977)

    MATH  Google Scholar 

  6. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  7. M. Epstein, R. Segev, Differentiable manifolds and the principle of virtual work in continuum mechanics. J. Math. Phys. 21, 1243–1245 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Kühnel, Differentialgeometrie: Kurven–Flächen–Mannigfaltigkeiten. Aufbaukurs Mathematik, 6th edn. (Springer Spektrum, Wiesbaden, 2013)

    Book  Google Scholar 

  9. H. Brezis, Functional Analysis Sobolev Spaces and Partial Differential Equations. Universitext (Springer, New York, 2010)

    Google Scholar 

  10. C. Truesdell, R. Toupin, The classical field theories, in Principles of Classical Mechanics and Field Theory. Encyclopedia of Physics, vol. III/1, ed. by S. Flügge (Springer, Berlin, 1960)

    Google Scholar 

  11. P. Germain, Sur l’application de la méthode des puissances virtuelles en mécanique des milieux. Comptes Rendus de l’Académie des Sciences Paris A 1051–1055 (1972)

    Google Scholar 

  12. J.M. Lee, Introduction to Smooth Manifolds, 2nd edn. Graduate Texts in Mathematics, vol. 218 (Springer, New York, 2012)

    Google Scholar 

  13. F.D. Murnaghan, Finite deformations of an elastic solid. Am. J. Math. 59(2), 235–260 (1937)

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Truesdell, W. Noll, The non-linear field theories of mechanics, in The Non-linear Field Theories of Mechanics. Encyclopedia of Physics, vol. III/3, ed. by S. Flügge (Springer, Berlin, 1965)

    Google Scholar 

  15. Y. Başar, D. Weichert, Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts (Springer, New York, 2000)

    Google Scholar 

  16. R. Segev, Notes on metric independent analysis of classical fields. Math. Methods Appl. Sci. 36(5), 497–566 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Eugster .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eugster, S.R. (2015). Force Representations. In: Geometric Continuum Mechanics and Induced Beam Theories. Lecture Notes in Applied and Computational Mechanics, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-16495-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16495-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16494-6

  • Online ISBN: 978-3-319-16495-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics