Skip to main content

Identification and in silico Analysis of NADPH Oxidase Homologues Involved in Allergy from an Olive Pollen Transcriptome

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Abstract

Reactive oxygen species generated by pollen NADPH oxidases are present in numerous allergenic pollen species. The superoxide generated by this enzyme has been suggested as a key actor in the induction of allergic inflammation. However, this enzyme has been characterized in Arabidopsis thaliana pollen only, where two pollen-specific genes (RbohH and RbohJ) have been described. The olive (Olea europaea L.) pollen is an important source of allergy in Mediterranean countries. We have assembled and annotated an olive pollen transcriptome, which allowed us to determine the presence of at least two pollen-specific NADPH oxidase homologues. Primers were designed to distinguish between the two homologues, and full-length sequences were obtained through a PCR strategy. Complete in silico analysis of such sequences, including phylogeny, 3-D modeling of the N-terminus, and prediction of cellular localization and post-translational modifications was carried out with the purpose of shed light into the involvement of olive pollen-intrinsic NADPH oxidases in triggering allergy symptoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liccardi, G., D’Amato, M., D’Amato, G.: Oleaceae pollinosis: a review. International Archives of Allergy and Immunology 111, 210–217 (1996)

    Article  Google Scholar 

  2. Villalba, M., Rodriguez, R., Batanero, E.: The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods (San Diego, Calif.) 66, 44–54 (2014)

    Google Scholar 

  3. Speranza, A., Scoccianti, V.: New insights into an old story: pollen ROS also play a role in hay fever. Plant Signal Behav. 7, 994–998 (2012)

    Article  Google Scholar 

  4. Boldogh, I., Bacsi, A., Choudhury, B.K., Dharajiya, N., Alam, R., Hazra, T.K., Mitra, S., Goldblum, R.M., Sur, S.: ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 115, 2169–2179 (2005)

    Article  Google Scholar 

  5. Dharajiya, N., Boldogh, I., Cardenas, V., Sur, S.: Role of pollen NAD(P)H oxidase in allergic inflammation. Current Opinion in Allergy and Clinical Immunology 8, 57–62 (2008)

    Article  Google Scholar 

  6. Bright, J., Hiscock, S.J., James, P.E., Hancock, J.T.: Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. Plant Physiol. Biochem. 47, 49–55 (2009)

    Article  Google Scholar 

  7. Wang, X.L., Takai, T., Kamijo, S., Gunawan, H., Ogawa, H., Okumura, K.: NADPH oxidase activity in allergenic pollen grains of different plant species. Biochem. Biophys. Res. Commun. 387, 430–434 (2009)

    Article  Google Scholar 

  8. Lamb, C., Dixon, R.A.: The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48, 251–275 (1997)

    Article  Google Scholar 

  9. Lambeth, J.D.: NOX enzymes and the biology of reactive oxygen. Nature Reviews. Immunology 4, 181–189 (2004)

    Article  Google Scholar 

  10. Bedard, K., Lardy, B., Krause, K.H.: NOX family NADPH oxidases: not just in mammals. Biochimie 89, 1107–1112 (2007)

    Article  Google Scholar 

  11. Dangl, J.L., Jones, J.D.: Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001)

    Article  Google Scholar 

  12. Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond-Kosack, K.E., Jones, J.D.: Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365–370 (1998)

    Article  Google Scholar 

  13. Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141, 336–340 (2006)

    Article  Google Scholar 

  14. Kaya, H., Nakajima, R., Iwano, M., Kanaoka, M.M., Kimura, S., Takeda, S., Kawarazaki, T., Senzaki, E., Hamamura, Y., Higashiyama, T., Takayama, S., Abe, M., Kuchitsu, K.: Ca2+-activated Reactive Oxygen Species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. The Plant Cell Online (2014)

    Google Scholar 

  15. Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., Romeis, T.: Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. The Plant Journal (2014)

    Google Scholar 

  16. Pazmandi, K., Kumar, B.V., Szabo, K., Boldogh, I., Szoor, A., Vereb, G., Veres, A., Lanyi, A., Rajnavolgyi, E., Bacsi, A.: Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells. PLoS ONE 7, e52085 (2012)

    Google Scholar 

  17. Bacsi, A., Dharajiya, N., Choudhury, B.K., Sur, S., Boldogh, I.: Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis. The Journal of Allergy and Clinical Immunology 116, 836–843 (2005)

    Article  Google Scholar 

  18. Shalaby, K.H., Allard-Coutu, A., O’Sullivan, M.J., Nakada, E., Qureshi, S.T., Day, B.J., Martin, J.G.: Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. Journal of Immunology 191, 922–933 (2013)

    Article  Google Scholar 

  19. Alché, J.D., M’rani-Alaoui, M., Castro, A.J., Rodríguez-García, M.I.: Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination. Plant and Cell Physiology 45,1149–1157 (2004)

    Google Scholar 

  20. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R.: Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research 41,W597–W600 (2013)

    Google Scholar 

  21. Gouy, M., Guindon, S., Gascuel, O.: SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution 27, 221–224 (2010)

    Article  Google Scholar 

  22. Darriba, D., Taboada, G.L., Doallo, R., Posada, D.: jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772–772 (2012)

    Article  Google Scholar 

  23. Chou, K.C., Shen, H.B.: Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5,e11335 (2010)

    Google Scholar 

  24. Heazlewood, J.L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., Schulze, W.X.: PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Research 36, D1015–D1021 (2008)

    Google Scholar 

  25. Lee, T.-Y., Bretana, N., Lu, C.-T.: PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinformatics 12, 261 (2011)

    Google Scholar 

  26. Xue, Y., Liu, Z., Gao, X., Jin, C., Wen, L., Yao, X., Ren, J.: GPS-SNO: Computational Prediction of Protein S-Nitrosylation Sites with a Modified GPS Algorithm. PLoS ONE 5, e11290 (2010)

    Google Scholar 

  27. Martinez, A., Traverso, J.A., Valot, B., Ferro, M., Espagne, C., Ephritikhine, G., Zivy, M., Giglione, C., Meinnel, T.: Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 2809–2831 (2008)

    Google Scholar 

  28. Kelley, L.A., Sternberg, M.J.: Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363–371 (2009)

    Google Scholar 

  29. Oda, T., Hashimoto, H., Kuwabara, N., Akashi, S., Hayashi, K., Kojima, C., Wong, H.L., Kawasaki, T., Shimamoto, K., Sato, M., Shimizu, T.: Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J. Biol. Chem. 285, 1435–1445 (2010)

    Article  Google Scholar 

  30. Wass, M.N., Kelley, L.A., Sternberg, M.J.: 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research 38,W469–W473 (2010)

    Google Scholar 

  31. Boisson-Dernier, A., Lituiev, D.S., Nestorova, A., Franck, C.M., Thirugnanarajah, S., Grossniklaus, U.: ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biology 11, e1001719 (2013)

    Google Scholar 

  32. Potocky, M., Jones, M.A., Bezvoda, R., Smirnoff, N., Zarsky, V.: Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174, 742–751 (2007)

    Google Scholar 

  33. Potocky, M., Pejchar, P., Gutkowska, M., Jimenez-Quesada, M.J., Potocka, A., Alche Jde, D., Kost, B., Zarsky, V.: NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. J. Plant Physiol. 169, 1654–1663 (2012)

    Google Scholar 

  34. Zafra, A., Rodriguez-Garcia, M.I., Alché, J.D.: Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 10, 36 (2010)

    Google Scholar 

  35. Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., Pallas, J.A., Loake, G.J.: S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264–268 (2011)

    Google Scholar 

  36. Drerup, M.M., Schlucking, K., Hashimoto, K., Manishankar, P., Steinhorst, L., Kuchitsu, K., Kudla, J.: The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol. Plant (2013)

    Google Scholar 

  37. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., Kuchitsu, K.: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J. Biol. Chem. 283, 8885–8892 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiménez-Quesada, M.J. et al. (2015). Identification and in silico Analysis of NADPH Oxidase Homologues Involved in Allergy from an Olive Pollen Transcriptome. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics