Skip to main content

The New Memetic Algorithm \(HEAD\) for Graph Coloring: An Easy Way for Managing Diversity

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9026))

Abstract

This paper presents an effective memetic approach \(HEAD\) designed for coloring difficult graphs. In this algorithm a powerful tabu search is used inside a very specific population of individuals. Indeed, the main characteristic of \(HEAD\) is to work with a population of only two individuals. This provides a very simple algorithm with neither selection operator nor replacement strategy. Because of its simplicity, \(HEAD\) allows an easy way for managing the diversity. We focus this work on the impact of this diversity management on well-studied graphs of the DIMACS challenge benchmarks, known to be very difficult to solve. A detailed analysis is provided for three graphs on which \(HEAD\) finds a legal coloring with less colors than reference algorithms: DSJC500.5 with 47 colors, DSJC1000.5 with 82 colors and flat1000_76_0 with 81 colors. The analysis performed in this work will allow to improve \(HEAD\) efficiency in terms of computation time and maybe to decrease the number of needed colors for other graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aardal, K., Hoesel, S., Koster, A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(4), 261–317 (2003). doi:10.1007/s10288-003-0022-6

    MATH  Google Scholar 

  2. Wood, D.C.: A technique for coloring a graph applicable to large-scale timetabling problems. Comput. J. 12, 317–322 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Sched. 11(4), 263–277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. Ann. Oper. Res. 130(1–4), 163–178 (2004). doi:10.1023/B:ANOR.0000032574.01332.98

    Article  MATH  MathSciNet  Google Scholar 

  5. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  6. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MATH  Google Scholar 

  7. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stan. 84(6), 489–506 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glover, F., Parker, M., Ryan, J.: Coloring by tabu branch and bound. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 26, 285–307 (1996)

    MathSciNet  Google Scholar 

  9. Zykov, A.A.: On some properties of linear complexes. Mat. Sb. (N.S.) 24(66:2), 163–188 (1949)

    MathSciNet  Google Scholar 

  10. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012). doi:10.1287/ijoc.1100.0436

    Article  MathSciNet  Google Scholar 

  11. Caramia, M., Dell’Olmo, P.: Constraint propagation in graph coloring. J. Heuristics 8(1), 83–107 (2002)

    Article  MATH  Google Scholar 

  12. Schindl, D.: Graph coloring and linear programming, presentation at First Joint Operations Research Days, Ecole Polytechnique Fédérale de Lausanne (EPFL), available on line (last visited June 2005) (July 2003). http://roso.epfl.ch/ibm/jord03.html

  13. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring. INFORMS J. Comput. 8(4), 344–354 (1996)

    Article  MATH  Google Scholar 

  14. Lewis, R.: A general-purpose hill-climbing method for order independent minimum gr ouping problems: a case study in graph colouring and bin packing. Comput. Oper. Res. 36(7), 2295–2310 (2009). doi:10.1016/j.cor.2008.09.004. http://www.sciencedirect.com/science/article/B6VC5-4TGHNJ4-1/2/1040b5ca8ef6fc2ddf012f32f3de9cb5

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  16. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res 151(2), 379–388 (2003). Elsevier

    Article  MATH  MathSciNet  Google Scholar 

  18. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156(13), 2551–2560 (2008). doi:10.1016/j.dam.2008.11.008

    Article  MATH  MathSciNet  Google Scholar 

  19. Caramia, M., Dell’Olmo, P., Italiano, G.F.: Checkcol: improved local search for graph coloringstar. J. Discret. Algorithms 4(2), 277–298 (2006). doi:10.1016/j.jda.2005.03.006

    Article  MATH  MathSciNet  Google Scholar 

  20. Mylopoulos, J., Reiter, R.: Order-based genetic algorithms and the graph coloring problem. In: Mylopoulos, J., Reiter, R. (eds.) Handbook of Genetic Algorithms, pp. 72–90. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  21. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)

    Article  MATH  Google Scholar 

  22. Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colouring. J. Oper. Res. Soc. 61(5), 819–826 (2010). doi:10.1057/jors.2009.27

    Article  MATH  Google Scholar 

  23. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999). doi:10.1023/A:1009823419804

    Article  MATH  MathSciNet  Google Scholar 

  24. Lü, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010). doi:10.1016/j.ejor.2009.07.016

    Article  MATH  Google Scholar 

  25. Wu, Q., Hao, J.-K.: Coloring large graphs based on independent set extraction. Comput. Oper. Res. 39(2), 283–290 (2012). doi:10.1016/j.cor.2011.04.002

    Article  MATH  MathSciNet  Google Scholar 

  26. Titiloye, Olawale, Crispin, Alan: Graph coloring with a distributed hybrid quantum annealing algorithm. In: O’Shea, James, Nguyen, Ngoc Thanh, Crockett, Keeley, Howlett, Robert J., Jain, Lakhmi C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 553–562. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8(2), 376–384 (2011). doi:10.1016/j.disopt.2010.12.001

    Article  MATH  MathSciNet  Google Scholar 

  28. Titiloye, O., Crispin, A.: Parameter tuning patterns for random graph coloring with quantum annealing. PLoS ONE 7(11), e50060 (2012). doi:10.1371/journal.pone.0050060

    Article  Google Scholar 

  29. Moalic, L., Gondran, A.: Variations on Memetic Algorithms for Graph Coloring Problems. http://arxiv.org/abs/arXiv1401.2184

  30. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence (1996)

    Google Scholar 

  31. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the \(k\)-coloring problem. Discret. Appl. Math. 156(2), 267–279 (2008). doi:10.1016/j.dam.2006.07.017

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author gratefully acknowledge financial support under grant ANR 12-JS02-009-01 “ATOMIC”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Moalic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moalic, L., Gondran, A. (2015). The New Memetic Algorithm \(HEAD\) for Graph Coloring: An Easy Way for Managing Diversity. In: Ochoa, G., Chicano, F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science(), vol 9026. Springer, Cham. https://doi.org/10.1007/978-3-319-16468-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16468-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16467-0

  • Online ISBN: 978-3-319-16468-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics