Skip to main content

Improving the Performance of the Germinal Center Artificial Immune System Using \(\epsilon \)-Dominance: A Multi-objective Knapsack Problem Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9026))

Abstract

The Germinal center artificial immune system (GC-AIS) is a novel immune algorithm inspired by recent research in immunology, which requires very few parameters to be set by hand. The population of solutions in GC-AIS is dynamic in nature and has no restrictions on its size which can cause problems of population explosion, where the population keeps growing very rapidly, leading to wasteful fitness evaluations. In this paper we try to address this problem in the GC-AIS by incorporating \(\epsilon \)-dominance, which is a well known mechanism in multi-objective optimization to regulate population size. The improved variant of GC-AIS is compared with a well known multi-objective evolutionary algorithm NSGA-II on the multi-objective knapsack problem. We show that our improved GC-AIS performs better than NSGA-II on the instances of the knapsack problem taken from [23] inheriting the same benefits of having to set fewer parameters manually.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.moeaframework.org.

References

  1. Cohen, R., Grebla, G.: Multi-dimensional OFDMA scheduling in a wireless network with relay nodes. In: INFOCOM, pp. 2427–2435. IEEE (2014)

    Google Scholar 

  2. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: PPSN VI, pp. 849–858. Springer (2000)

    Google Scholar 

  4. Durillo, J., Nebro, A., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. In: CEC, pp. 4138–4325. Springer, July 2010

    Google Scholar 

  5. Freschi, F., Coello, C.A.C., Repetto, M.: Multiobjective optimization and artificial immune systems: a review. Handb. Res. Artif. Immune Syst. Nat. Comput. Applying Complex Adapt. Technol. 4, 1–21 (2009)

    Google Scholar 

  6. Greensmith, J.: The dendritic cell algorithm. Ph.D. thesis, University of Nottingham (2007). http://www.cs.nott.ac.uk/~qg/thesis.pdf

  7. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Ishibuchi, H., Kaige, S.: Effects of repair procedures on the performance of EMO algorithms for multiobjective 0/1 knapsack problems. In: CEC, vol. 4, pp. 2254–2261. IEEE (2003)

    Google Scholar 

  9. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Computat. 6(4), 402–412 (2002)

    Article  Google Scholar 

  10. Joshi, A., Rowe, J.E., Zarges, C.: An immune-inspired algorithm for the set cover problem. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 243–251. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Kim, J., Bentley, P.J.: Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator. In: CEC, vol. 2, pp. 1244–1252. IEEE Press (2002)

    Google Scholar 

  12. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Computat. 10(3), 263–282 (2002)

    Article  Google Scholar 

  13. Laumanns, M., Zitzler, E., Thiele, L.: On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 181–196. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Murphy, K.: Janeway’s Immunobiology. Garland Science, New York (2011)

    Google Scholar 

  15. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: ICGA, pp. 93–100. Lawrence Erlbaum Associates (1985)

    Google Scholar 

  16. Shah, R., Reed, P.: Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. Eur. J. Oper. Res. 211(3), 466–479 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin packing. Evol. Comput. (2014, to appear)

    Google Scholar 

  18. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Technical report, DTIC Document (1999)

    Google Scholar 

  19. Zhang, Y., Meyer-Hermann, M., George, L.A., Figge, M.T., Khan, M., Goodall, M., Young, S.P., Reynolds, A., Falciani, F., Waisman, A., Notley, C.A., Ehrenstein, M.R., Kosco-Vilbois, M., Toellner, K.M.: Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210(3), 457–464 (2013)

    Article  Google Scholar 

  20. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.P.K.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: CEC, pp. 892–899. IEEE (2006)

    Google Scholar 

  21. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH Zurich, Switzerland (1999)

    Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2001)

    Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Joshi, A., Rowe, J.E., Zarges, C. (2015). Improving the Performance of the Germinal Center Artificial Immune System Using \(\epsilon \)-Dominance: A Multi-objective Knapsack Problem Case Study. In: Ochoa, G., Chicano, F. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015. Lecture Notes in Computer Science(), vol 9026. Springer, Cham. https://doi.org/10.1007/978-3-319-16468-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16468-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16467-0

  • Online ISBN: 978-3-319-16468-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics