Skip to main content

Irrigation of the Root Canal System by Laser Activation (LAI): PIPS Photon-Induced Photoacoustic Streaming

  • Chapter

Abstract

Root canal debridement and disinfection control are two of the main steps in root canal therapy. Control of bacterial load from an infected root canal before obturation is necessary to have a more predictable outcome. Bacteria will be present as biofilm colonies and will be responsible to establish disease and infection. Inside the root canal, it will be attached to the canal walls, well within dentinal tubules, fins, lateral canals, and foramina. In a different study, Nair found the presence of bacteria within these areas such as the root canal, fins, webs, isthmuses, etc., even after cleaning, shaping, and filling of the root canal system. When bacteria colonize the root canal system, it becomes very hard to effectively remove it from these inaccessible areas.

During root canal therapy, the endodontist faces all types of complications, one of which is the root canal morphology. There are several studies where several authors have verified the complexity of the root canal system. Root canals can present difficulty with accessibility, and in some areas of the root canal system, accessibility by instrumentation, irrigation, or even intra-canal medication is not possible. Because of this inaccessibility, different irrigation techniques have been proposed in order to obtain better disinfection rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schilder H. Cleaning and shaping of the root canal. Dent Clin North Am. 1974;18(2):269–96.

    PubMed  Google Scholar 

  2. Bystrom A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981;89(4):321–8.

    PubMed  Google Scholar 

  3. Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16(10):498–504.

    Article  PubMed  Google Scholar 

  4. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112(10):1466–77.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod. 2007;33(6):652–62.

    Article  PubMed  Google Scholar 

  6. Nair PN. Pathogenesis of apical periodontitis and the cases of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348–81.

    Article  PubMed  Google Scholar 

  7. Nair PNR, Henry S, Cano V, Vera J. Microbial status of the apical root canal system of human mandibular first molars with primary apical periodontitis after one visit endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:231–52.

    Article  PubMed  Google Scholar 

  8. Hess W. Formation of root canals in human teeth. J Am Den Assoc. 1921;8:704–34.

    Google Scholar 

  9. Wine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.

    Article  Google Scholar 

  10. Pineda F, Kuttler Y. Mesiodistal and buccolingual roentgenographic investigation of 7,275 root canals. Oral Surg Oral Med Oral Pathol. 1972;33:101–10.

    Article  PubMed  Google Scholar 

  11. Verticcu FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984;58:589–99.

    Article  Google Scholar 

  12. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Topics. 2005;10:3–29.

    Article  Google Scholar 

  13. Arnold M, Ricucci D, Siqueira Jr JF. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report. J Endod. 2013;39(9):117–84.

    Article  Google Scholar 

  14. Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. J Endod. 1990;16(12):589–95.

    Article  PubMed  Google Scholar 

  15. Safavi KE, Dowdenn WE, Introcaso JH, Langeland K. A comparison of antimicrobial effects of calcium hydroxide and iodine-potassium iodide. J Endod. 1985;11(10):454–6.

    Article  PubMed  Google Scholar 

  16. Weller RN, Brady JM, Bernier WE. Efficacy of ultrasonic cleaning. J Endod. 1980;6(9):740–3.

    Article  PubMed  Google Scholar 

  17. Van der Sluis LW, Wu MK, Wesselink PR. The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from human root canals prepares using instruments of varying taper. Int Endod J. 2005;38(10):746–8.

    Google Scholar 

  18. Ahmad M, Pitt Ford TJ, Crum LA. Ultrasonic debridement of root canals: acoustic streaming and its possible role. J Endod. 1987;13(10):490–9.

    Article  PubMed  Google Scholar 

  19. Stern RH, Sognnaes RF. Laser effect on dental hard tissues. A preliminary report. J South Calif Dent Assoc. 1965;33:17–9.

    PubMed  Google Scholar 

  20. Meral G, Tasar F, Kocagøz S, Sener C. Factors affecting the antibacterial effects of Nd:YAG Laser in vivo. Laser Surg Med. 2003;32(3):197–202.

    Article  Google Scholar 

  21. Nm S, Roth CA. Ruby laser as a microsurgical instrument. Science. 1963;141:46–7.

    Article  Google Scholar 

  22. Klein E, Fine S, Ambrus J. Interaction of laser irradiation with biological system. III. Studies on biological systems in vitro. Fed Proc. 1965;14:5101–10.

    Google Scholar 

  23. McGuff PE, Bell EJ. The effect of laser irradiation on bacteria. Med Biol III. 1966;16:191–3.

    Google Scholar 

  24. Pini R, Salimbeni R, Vannini M. Laser dentistry: a new application of excimer laser in root canal therapy. Laser Surg Med. 1989;9:352–7.

    Article  Google Scholar 

  25. Weichman JA, Johnson FM. Laser in endodontics. A preliminary investigation. Oral Surg Oral Med Oral Pathol. 1971;31:416–20.

    Article  PubMed  Google Scholar 

  26. Weichman JA, Johnsosn FM, Nitta LK. Laser use in endodontics. Part II. J Oral Surg. 1972;34:828–30.

    Article  Google Scholar 

  27. Dederich D, Zachariensen K, Tulip J. Scanning electron microscopic analysis of root canal wall dentin follow Neodymium Yttrium garnet laser irradiation. J Endod. 1984;10:428.

    Article  PubMed  Google Scholar 

  28. Levy G. Cleaning and shaping the root canal with Nd:YAG laser beam: a comparative study. J Endod. 1992;18:123–7.

    Article  PubMed  Google Scholar 

  29. Kantola S. Laser induced effects on the tooth structure. IV. A study of changes in the calcium and phosphorous contents in dentine by electron probe microanalysis. Acta Odontol Scand. 1972;30:463–74.

    Article  PubMed  Google Scholar 

  30. Gordon W, Atabakhsh VA, Meza F, Doms A, Nissan R, Nissan R, Risoiu I, Stevens RH. The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with emitting tips on the root canal dentin walls infected with Enterococcus faecalis. J Am Dent Assoc. 2007;138(7):992–1002.

    Article  PubMed  Google Scholar 

  31. Farges P, Nahas P, Bonin P. In vitro study of a Nd:YAG laser in endodontic retreatment. J Endod. 1998;24:359–63.

    Article  Google Scholar 

  32. Folwaczny M, Mehl A, Jordan C, Hickel R. Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals. J Endod. 2002;28:24–9.

    Article  PubMed  Google Scholar 

  33. Peters OA, Schönenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34(3):221–30.

    Article  PubMed  Google Scholar 

  34. Kerekes K, Tronstad L. Morphological observation on the root canals of human molars. J Endod. 1977;3(3):114–8.

    Article  PubMed  Google Scholar 

  35. Wu MKL, Wesselink PR. A primary observation on the preparation and obturation of oval canals. Int Endod J. 2001;34(2):137–41.

    Article  PubMed  Google Scholar 

  36. Tatsuta CT, Morgan LA, Baumgartner JC, Adey JD. Effect of calcium hydroxide and four irrigation regimens on instrumented and uninstrumented canal wall topography. J Endod. 1999;25(2):93–8.

    Article  PubMed  Google Scholar 

  37. Crane AB. A practicable root canal technique. Philadelphia: Lea & Febinger; 1920.

    Google Scholar 

  38. Zehnder M, Kosicki D, Luder H, Sener B, Waltimo T. Tissue – dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):756–62.

    Article  PubMed  Google Scholar 

  39. Van der Sluis LW, Vogels MP, Verhaagen B, Macedo R, Wesselink PR. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant. J Endod. 2010;36(4):737–40.

    Article  PubMed  Google Scholar 

  40. Williams AR. Disorganization and disruption of mammalian and amoeboid cells by acoustic microstreaming. J Acoust Soc Am. 1972;52:688–93.

    Article  Google Scholar 

  41. Peters OA, Bardsley S, Fong J, Pandher G, Divito E. Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod. 2011;37(7):1008–12.

    Article  PubMed  Google Scholar 

  42. Jaramillo DE, Aprecio R, Angelov N, Divito E, McClammy TV. Efficacy of photon induced photoacoustic streaming (PIPS) on the root canals infected with Enterococcus faecalis: a pilot study. Endod Prac. 2012;7(3):28–32.

    Google Scholar 

  43. Divito E, Peters OA, Olivi G. Effectiveness of the erbium:YAG laser and new design radial and stripped tips in removing the smear layer after toot canal instrumentation. Laser Med Scue. 2012;27:273–80.

    Article  Google Scholar 

  44. Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 1. Temperature levels at the external surface of the root. Int Endod J. 1990;23(5):263–7.

    Article  PubMed  Google Scholar 

  45. Sonntag KD, Kutzman B, Burkes J, Hoke J, Moshonov J. Pulpal response to cavity preparation with the Er:YAG and Mark III free electron lasers. Oral Sug Oral Med Oral Pathol Oral Radiol Endod. 1996;81:695–702.

    Article  Google Scholar 

  46. Armengol V, Jean A, Marion D. Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod. 2000;26(3):138–41.

    Article  PubMed  Google Scholar 

  47. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004;3(5):412–8.

    Article  PubMed  Google Scholar 

  48. Lim Z, Cheng JL, Kim TW, Teo EG, Wong J, George S, Kishen A. Light-activated disinfection: an alternative endodontic disinfection strategy. Aust Dent J. 2009;54(2):108–14.

    Article  PubMed  Google Scholar 

  49. George S, Kishen A. Influence of photosensitizer solvent on the mechanisms of photoactivated killing of enterococcus faecalis. Photochem Photobiol. 2008;84(3):734–40.

    Article  PubMed  Google Scholar 

  50. Boutsioukis C, Lambdrianidis T, Kastrinakis E. Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamic study. Int Endod J. 2009;42(2):144–55.

    Article  PubMed  Google Scholar 

  51. Boutsioukis C, Kastrinakis E, Lambrianidis T, Verhaagen B, Versluis M, van der Sluis LW. Formation and removal of apical vapor lock during syringe irrigation. A combined experimental and computational fluid dynamics approach. Int Endod J. 2014;47(2):191–201.

    Article  PubMed  Google Scholar 

  52. Hsieh YD, Gau CH, Kung Wu SF, Shen EC, Hsu PW, Fu E. Dynamic recording of irrigating fluid distribution in the root canals using thermal image analysis. Int Endod J. 2007;40(1):11–7.

    Article  PubMed  Google Scholar 

  53. Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, Haapasalo M. Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. J Endod. 2010;36(5):884–9.

    Article  PubMed  Google Scholar 

  54. van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40(6):415–26.

    Article  PubMed  Google Scholar 

  55. Fincham AM, Jaramillo DE, Divito E, Peters OA. Irrigant flow during Photo Induced Photoacoustic streaming (PIPS) using micro digital particle image velocimetry (μDPIV): a pilot study. IEJ. 2014;47:659–66.

    Google Scholar 

  56. Ordinola-Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. Int Endod J. 2013. doi:10.1111/iej/12202.

  57. Jaramillo DE, Aguilar E, Aprecio RM, Tran K. Dentin disinfection using PIPS and conventional needle irrigation. LLUSD CDR, 2011. Unpublished data.

    Google Scholar 

  58. Alsharhrani M, Divito E, Hughes C, Nathanson D, Huang G. Enhanced removal of enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus Photon Induced Photoacoustic Streaming: an in vitro study. Photomed Laser Surg. 2014;32(5):524–30. doi:10.1089/pho2014.3714.

  59. Vera J, Siqueira Jr JF, Ricucci D, Loghin S, Fernandes N, Flores B, Cruz AG. One-versus two-visit endodontic treatment of teeth with apical periodontitis: a histobacteriological study. J Endod. 2012;38(8):1040–52.

    Article  PubMed  Google Scholar 

  60. Lloyd A, Uhles J, Clement DJ, Garcia-Godoy F. Elimination of intracanal tissue and debris through a novel laser-activated system assessed using high-resolution micro-computed tomography: a pilot study. Jendod, 2014:40(4):584–7. doi:http://dx.doi.org/10.1016/j.joen.2013.10.040.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Jaramillo DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaramillo, D.E. (2015). Irrigation of the Root Canal System by Laser Activation (LAI): PIPS Photon-Induced Photoacoustic Streaming. In: Basrani, B. (eds) Endodontic Irrigation. Springer, Cham. https://doi.org/10.1007/978-3-319-16456-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16456-4_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16455-7

  • Online ISBN: 978-3-319-16456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics