Skip to main content

Discordant Cellular and Organ Xenotransplantation—From Bench to Bedside

  • Chapter
  • First Online:
Organ Transplantation in Times of Donor Shortage

Abstract

Human allotransplantation has been very successful over the past six decades. Heart and kidney transplantations remain the therapy of choice for end-stage organ failure. Although surgical competence is available in many medical centres around the world, the demand for organs far exceeds the supply from human donors. The consequences for patients waiting for transplants are severe, as can be seen by the following two examples. In Germany, the annual mortality for waiting heart transplant candidates is 18 %. The average waiting time for a cadaveric kidney is five years, which significantly reduces the prospects for patients eventually receiving a donated kidney, because graft survival drops substantially after extended dialysis .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rahmel (2013).

  2. 2.

    Meier-Kriesche and Kaplan (2002).

  3. 3.

    Reichenspurner et al. (1989).

  4. 4.

    Cozzi et al. (2009).

  5. 5.

    Nagata et al. (2007).

  6. 6.

    Leveque et al. (2011).

  7. 7.

    Hara and Cooper (2011).

  8. 8.

    Hossain et al. (2007).

  9. 9.

    Collaborative Islet Transplant Registry (2013).

  10. 10.

    Cardona et al. (2006); Hering et al. (2006).

  11. 11.

    Sun et al. (1996); Dufrane et al. (2010).

  12. 12.

    van der Windt et al. (2009).

  13. 13.

    Kouchoukos et al. (2012).

  14. 14.

    Kasimir et al. (2006).

  15. 15.

    Mueller et al. (2011); Scobie and Takeuchi (2009).

  16. 16.

    Le Tissier et al. (1997).

  17. 17.

    Klymiuk et al. (2002); Oldmixon et al. (2002).

  18. 18.

    Bartosch et al. (2004).

  19. 19.

    Garkavenko et al. (2008a, b); Wynyard et al. (2014).

  20. 20.

    Denner et al. (2009); WHO summaries (2008, 2011); Fishmann et al. (2011).

  21. 21.

    Galili (2013).

  22. 22.

    Phelps et al. (2003).

  23. 23.

    Ekser et al. (2011).

  24. 24.

    Yamada et al. (2005).

  25. 25.

    Kuwaki et al. (2005); Mohiuddin et al. (2014, and personal communication 2015).

  26. 26.

    Ezzelarab et al. (2009); Shimizu et al. (2008).

  27. 27.

    Byrne et al. (2011); Diswall et al. (2010).

  28. 28.

    Pierson et al (2009), Ekser et al. (2011).

  29. 29.

    Petersen et al. (2011).

  30. 30.

    Cowan et al. (2009); Pierson et al (2009).

  31. 31.

    Roussel et al. (2008).

  32. 32.

    Peterson et al. (2009); Wünsch et al. (2014).

  33. 33.

    Palumbo and Anderson (2011).

  34. 34.

    Heinzelmann et al. (2008).

  35. 35.

    Hering et al. (2006); Kenyon et al. (1999); Corcoran et al. (2010).

  36. 36.

    Klymiuk et al. (2012).

  37. 37.

    Ekser et al. (2012).

  38. 38.

    Dufrane et al. (2010).

  39. 39.

    Van der Windt et al. (2009).

  40. 40.

    Mohiuddin et al. (2012, 2014, and personal communication)

  41. 41.

    Bauer et al. (2010); McGregor et al. (2009).

  42. 42.

    Badin et al. (2010); Choi et al. (2011).

  43. 43.

    Baldan et al. (2004).

  44. 44.

    Ramirez et al. (2000); Cantu et al. (2007).

  45. 45.

    Calafiore et al. (2004).

  46. 46.

    Elliot et al. (2011, and personal communication).

  47. 47.

    Wynyard et al. (2014).

  48. 48.

    Ludwig et al. (2012), Ludwig et al. (2013).

References

  • Badin, R.A., A. Padoan, and M. Vadori, et al. 2010. Long-term clinical recovery in parkinsonian monkey recipients of CTLA4-Ig transgenic porcine neural precursors. Transplantation 90 (Suppl 2): 47.

    Article  Google Scholar 

  • Baldan, N., P. Rigotti, and F. Calabrese, et al. 2004. Ureteral stenosis in hDAF pig-to-primate renal xenotransplantation: A phenomenon related to immunological events? American Journal of Transplantation 4 (4): 475–481.

    Article  Google Scholar 

  • Bartosch, B., D. Stefanidis, and R. Myers, et al. 2004. Evidence and consequence of porcine endogenous retrovirus recombination. Journal of Virology 78 (24): 13880–13890.

    Article  Google Scholar 

  • Bauer, A., J. Postrach, and M. Thormann, et al. 2010. First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation 17 (3): 243–249.

    Article  Google Scholar 

  • Byrne, G. W., P. G. Stalboerger, and Z. Du, et al. 2011. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91 (3): 287–292.

    Article  Google Scholar 

  • Calafiore, R., G. Basta, and G. Luca, et al. 2004. Grafts of microencapsulated pancreatic islet cells for the therapy of diabetes mellitus in non-immunosuppressed animals. Biotechnology and Applied Biochemistry 39(Pt 2): 159–164.

    Article  Google Scholar 

  • Cantu, E., K. R. Balsara, and B. Li, et al. 2007. Prolonged function of macrophage, von Willibrand factor-deficient porcine pulmonary xenografts. American Journal of Transplantation 7 (1): 66–75.

    Article  Google Scholar 

  • Cardona, K., G. S. Korbutt, and Z. Milas, et al. 2006. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Medicine 12 (3): 304–306.

    Article  Google Scholar 

  • Choi, H. J., M. K. Kim, and H. J. Lee, et al. 2011. Efficacy of pig-to-rhesus lamellar corneal xenotransplantation. Investigative Ophthalmology and Visual Science 52 (9): 6643–6650.

    Article  Google Scholar 

  • Collaborative Islet Transplant Registry. 2013. www.citeregistry.org. Accessed 6 June 2015.

  • Corcoran, P. C., K. A. Horvath, and A. K. Singh, et al. 2010. Surgical and nonsurgical complications of a pig to baboon heterotopic heart transplantation model. Transplantation Proceedings 42 (6): 2149–2151.

    Article  Google Scholar 

  • Cowan, P. J., J. C. Roussel, and A. J. d’Apice. 2009. The vascular and coagulation issues in xenotransplantation. Current Opinion Organ Transplantation 14 (2): 161–167.

    Article  Google Scholar 

  • Cozzi, E., M. Tallacchini, and E. B. Flanagan, et al. 2009. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes. Chapter 1: Key ethical requirements and progress toward the definition of an international regulatory framework. Xenotransplantation 16 (4): 203–214.

    Article  Google Scholar 

  • Denner, J., H. J. Schuurman, and C. Patience. 2009. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes. Chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 16 (4): 239–248.

    Article  Google Scholar 

  • Diswall, M., J. Angstrom, and H. Karlsson, et al. 2010. Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation 17 (1): 48–60.

    Article  Google Scholar 

  • Dufrane, D., R. M. Goebbels, P. Gianello. 2010. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90 (10): 1054–1062.

    Article  Google Scholar 

  • Ekser, B., G. Kumar, M. Veroux, and D. K. Cooper. 2011. Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Current Opinion Organ Transplantation 16 (2): 222–230.

    Article  Google Scholar 

  • Ekser, B., M. Ezzelarab, and H. Hara, et al. 2012. Clinical xenotransplantation: The next medical revolution? Lancet 379 (9816): 672–83.

    Article  Google Scholar 

  • Elliott, R. B. 2011. Living cell technologies. Towards xenotransplantation of pig islets in the clinic. Current Opinion Organ Transplantation 16 (2): 195–200.

    Article  Google Scholar 

  • Ezzelarab, M., B. Garcia, and A. Azimzadeh, et al. 2009. The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients. Transplantation 87 (6): 805–812.

    Article  Google Scholar 

  • Fishmann, J. A., S. Scobie, and Y. Takeuchi. 2011. Annex 4. Xenotransplantation-associated infectious risk: A background paper for the second WHO global consultation on regulatory requirements for Xenotransplantation clinical trials. Geneva, Switzerland, 17–19 October 2011. http://www.who.int/transplantation/xeno/en/. Accessed 20 April 2015.

  • Galili, U. 2013. Discovery of the natural anti-Gal antibody and its past and future relevance to medicine. Xenotransplantation 20 (3): 138–147.

    Google Scholar 

  • Garkavenko, O., B. Dieckhoff, and S. Wynyard, et al. 2008a. Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study. Journal of Medical Virology 80 (11): 2046–2052.

    Article  Google Scholar 

  • Garkavenko, O., S. Wynyard, and D. Nathu, et al. 2008b. Porcine endogenous retrovirus (PERV) and its transmission characteristics: A study of the New Zealand designated pathogen-free herd. Cell Transplantation 17 (12): 1381–1388.

    Article  Google Scholar 

  • Hara H, and Cooper, D. K. 2011. Xenotransplantation—The future of corneal transplantation? Cornea 30 (4): 371–378.

    Article  Google Scholar 

  • Heinzelmann, F., P. J. Lang, and H. Ottinger, et al. 2008. Immunosuppressive total lymphoid irradiation-based reconditioning regimens enable engraftment after graft rejection or graft failure in patients treated with allogeneic hematopoietic stem cell transplantation. International Journal of Radiation Oncology, Biology, Physics 70 (2): 523–528.

    Article  Google Scholar 

  • Hering, B. J., M. Wijkstrom, and M. L. Graham, et al. 2006. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nature Medicine 12 (3): 301–303.

    Article  Google Scholar 

  • Hossain, P., B. Kawar, and M. El Nahas. 2007. Obesity and diabetes in the developing world—A growing challenge. The New England Journal of Medicine 356 (3): 213–215.

    Article  Google Scholar 

  • Kasimir, M. T., E. Rieder, and G. Seebacher, et al. 2006. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. Journal of Heart Valve Disease 15 (2): 278–286.

    Google Scholar 

  • Kenyon, N. S., M. Chatzipetrou, and M. Masetti, et al. 1999. Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proceedings of National Academy of Sciences United States of America 96 (14): 8132–8137.

    Article  Google Scholar 

  • Klymiuk, N., M. Muller, G. Brem, and B. Aigner. 2002. Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. Journal of Virology 76 (22): 11738–11743.

    Article  Google Scholar 

  • Klymiuk, N., L. van Buerck, and A. Bähr, et al. 2012. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection. Diabetes. 61 (6):1527–1532.

    Article  Google Scholar 

  • Kouchoukos, N. T., E. H. Blackstone, F. L. Hanley, J. K. Kirlin, J. Kirklin, und B. Barratt-Boyes. 2012. Cardiac surgery. 4th ed. Churchill Livingstone, Elsevier, Oxford. 619–620.

    Google Scholar 

  • Kuwaki, K., Y. L. Tseng, and F. J. Dor, et al. 2005. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors:Iinitial experience. Nature Medicine 11 (1): 29–31.

    Article  Google Scholar 

  • Le Tissier, P., J. P. Stoye, Y. Takeuchi, C. Patience, and R. A. Weiss. 1997. Two sets of human-tropic pig retrovirus. Nature 389 (6652): 681–682.

    Article  Google Scholar 

  • Leveque, X., E. Cozzi, P. Naveilhan, and I. Neveu. 2011. Intracerebral xenotransplantation: Recent findings and perspectives for local immunosuppression. Current Opinion Organ Transplantation 16 (2): 190–194.

    Article  Google Scholar 

  • Ludwig, B., A. Rotem, and J. Schmid et al. 2012. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proceedings of National Academy of Sciences United States of America 109 (13): 5022–5027.

    Google Scholar 

  • Ludwig, B., A. Reichel, and A. Steffen et al. 2013. Transplantation of human islets without immunosuppression. Proceedings of National Academy of Sciences United States of America 110 (47): 19054–19058

    Google Scholar 

  • McGregor, C. G., G. W. Byrne, and M. Vlasin, et al. 2009. Early cardiac function and gene expression after orthotopic cardiac xenotransplantation. Xenotransplantation 16: 356.

    Google Scholar 

  • Meier-Kriesche, H. U., and B. Kaplan. 2002. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: A paired donor kidney analysis. Transplantation 74 (10): 1377–1381.

    Article  Google Scholar 

  • Mohiuddin, M. M., P. C. Corcoran, and A. K. Singh, et al. 2012. T-Cell depletion extends the survival of GTkO/hCD 46 Tg pig heart xenografts in baboons for up to 8 months. American Journal of Transplantation 12 (3): 763–771.

    Article  Google Scholar 

  • Mohiuddin, M. M., A. K. Singh, and P. C. Corcoran et al. 2014. Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. The Journal of Thoracic and Cardiovascular Surgery 148 (3): 1106–1113.

    Google Scholar 

  • Mueller, N. J., Y. Takeuchi, G. Mattiuzzo, and L. Scobie. 2011. Microbial safety in xenotransplantation. Current Opinion Organ Transplantation 16 (2): 201–206.

    Article  Google Scholar 

  • Nagata, H., R. Nishitai, and C. Shirota, et al. 2007. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology 132 (1): 321–329.

    Article  Google Scholar 

  • Oldmixon, B. A., J. C. Wood, and T. A. Ericsson, et al. 2002. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. Journal of Virology 76 (6): 3045–3048.

    Article  Google Scholar 

  • Palumbo, A., and K. Anderson. 2011. Multiple myeloma. The New England Journal of Medicine 364 (11): 1046–1060.

    Article  Google Scholar 

  • Petersen, B., W. Ramackers, and A. Tiede, et al. 2009. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16 (6): 486–495.

    Article  Google Scholar 

  • Petersen, B., W. Ramackers, and A. Lucas-Hahn, et al. 2011. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18 (6): 355–368.

    Article  Google Scholar 

  • Phelps, C. J., C. Koike, and T. D. Vaught, et al. 2003. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299 (5605): 411–414.

    Article  Google Scholar 

  • Pierson, R. N., III. 2009. Antibody-mediated xenograft injury: Mechanisms and protective strategies. Transplant Immunology 21: 65–69.

    Article  Google Scholar 

  • Rahmel, A. 2013. Eurotransplant International Foundation. Annual Report.

    Google Scholar 

  • Ramirez, P., R. Chavez, and M. Majado, et al. 2000. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 70: 989–998.

    Article  Google Scholar 

  • Reichenspurner, H., P. A. Human, and D. H. Boehm, et al. 1989. Optimalization of immunosuppression after xenogeneic heart transplantation in primates. Journal of Heart Transplantation 8 (3): 200–207.

    Google Scholar 

  • Roussel, J. C., C. J. Moran, and E. J. Salvaris, et al. 2008. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. American Journal of Transplantation 8 (6): 1101–1112.

    Article  Google Scholar 

  • Scobie, L., and Y. Takeuchi. 2009. Porcine endogenous retrovirus and other viruses in xenotransplantation. Current Opinion Organ Transplantation 14 (2): 175–179.

    Article  Google Scholar 

  • Shimizu, A., Y. Hisashi, and K. Kuwaki, et al. 2008. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. American Journal of Pathology 172 (6): 1471–1481.

    Article  Google Scholar 

  • Sun, Y., X. Ma, and D. Zhou, et al. 1996. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. Journal of Clinical Investigation 98 (6): 1417–1422.

    Article  Google Scholar 

  • Van der Windt, D. J., R. Bottino, and A. Casu, et al. 2009. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. American Journal of Transplantation 9 (12): 2716–2726.

    Article  Google Scholar 

  • WHO, First World Health Organization Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials: Changsha, China, 19–21 November 2008. The Changsha Communique. Xenotransplantation;16:61-3., and Second World Health Organization Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials: Geneva, Switzerland, 17-19 October 2011. http://www.who.int/transplantation/xeno/en/. Accessed 6 June 2015.WHO global consultations on regulatory requirements for xenotransplantation clinical trials. Changsha, China. November 19–21, 2008; Geneva, Switzerland, October 17–19, 2011. http://www.who.int/transplantation/xeno/en/.

  • Wolf, E. et al. Unpublished.

    Google Scholar 

  • Wuensch, A., A. Baehr, and A. K. Bongoni et al. 2014. Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97 (2): 138–147.Wynyard, S., D. Nathu, O. Garkavenko, J. Denner J, and R. Elliott. 2014. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 21 (4): 309–323.

    Google Scholar 

  • Yamada, K., K. Yazawa, and A. Shimizu, et al. 2005. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nature Medicine 11 (1): 32–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Reichart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reichart, B. et al. (2016). Discordant Cellular and Organ Xenotransplantation—From Bench to Bedside. In: Jox, R., Assadi, G., Marckmann, G. (eds) Organ Transplantation in Times of Donor Shortage. International Library of Ethics, Law, and the New Medicine, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-16441-0_19

Download citation

Publish with us

Policies and ethics