Advertisement

The Canonical Distribution and Stochastic Differential Equations

  • Ben Leimkuhler
  • Charles Matthews
Chapter
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 39)

Abstract

Until now, we have considered molecular models for isolated collections of atoms. We have seen how to derive equations of motion, and studied the properties of the relevant dynamical systems. We have also observed that the chaotic nature of a typical system imparts a random aspect which suggests that the dynamics defines, at least in some approximate sense, a limiting probability distribution.

Keywords

Random Walk Stochastic Differential Equation Wiener Process Canonical Ensemble Heat Bath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 13.
    Ariel, G., Vanden-Eijnden, E.: A strong limit theorem in the Kac-Zwanzig model. Nonlinearity 22, 145–162 (2009). doi:10.1088/0951-7715/22/1/008 CrossRefzbMATHMathSciNetGoogle Scholar
  2. 44.
    Bou-Rabee, N.: Time integrators for molecular dynamics. Entropy 16(1), 138–162 (2014). doi:10.3390/e16010138 CrossRefGoogle Scholar
  3. 46.
    Bou-Rabee, N., Owhadi, H.: Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48, 278–297 (2010). doi:10.1137/090758842 CrossRefzbMATHMathSciNetGoogle Scholar
  4. 55.
    Brünger, A., Brooks III, C., Karplus, M.: Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105, 495–500 (1984). doi:10.1016/0009-2614(84)80098-6
  5. 62.
    Bussi, G., Parrinello, M.: Accurate sampling using Langevin dynamics. Phys. Rev. E 75, 056,707 (2007). doi:10.1103/PhysRevE.75.056707
  6. 113.
    Dürr, D., Goldstein, S., Lebowitz, J.: A mechanical model of Brownian motion. Commun. Math. Phys. 78(4), 507–530 (1980). doi:10.1007/BF02046762 CrossRefGoogle Scholar
  7. 126.
    Faou, E., Lelièvre, T.: Conservative stochastic differential equations: Mathematical and numerical analysis. Math. Comput. 78(268), 2047–2074 (2009). doi:10.1090/S0025-5718-09-02220-0 CrossRefzbMATHGoogle Scholar
  8. 138.
    Ford, G., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504–515 (1965). doi:10.1063/1.1704304 CrossRefzbMATHMathSciNetGoogle Scholar
  9. 147.
    Gibbs, J.: Elementary principles in statistical mechanics. C. Scribner, New York (1902). http://archive.org/details/elementaryprinci00gibbrich
  10. 150.
    Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 160.
    Hairer, M.: A probabilistic argument for the controllability of conservative systems. http://arxiv.org/pdf/math-ph/0506064.pdf (2008). Unpublished
  12. 161.
    Hairer, M.: Convergence of Markov processes. The canonical distribution and stochastic differential equations (2010). UnpublishedGoogle Scholar
  13. 165.
    Hairer, M., Mattingly, J.C.: Yet Another Look at Harris’ Ergodic Theorem for Markov Chains. In: Dalang, R., Dozzi, M. and Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications VI. Springer Basel 63, 109–117 (2011). doi:10.1007/978-3-0348-0021-1_7 ISBN:978-3034800204
  14. 181.
    Hoogerbrugge, P., Koelman, J.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1992). doi:10.1209/0295-5075/19/3/001 CrossRefGoogle Scholar
  15. 185.
    Huisinga, W., Schütte, C., Stuart, A.: Extracting macroscopic stochastic dynamics: model problems. Commun. Pure Appl. Math. 56, 234 (2003). doi:10.1002/cpa.10057 CrossRefzbMATHGoogle Scholar
  16. 193.
    Jepps, O., Ayton, G., Evans, D.: Microscopic expressions for the thermodynamic temperature. Phys. Rev. E 62, 4757–4763 (2000). doi:10.1103/PhysRevE.62.4757 CrossRefGoogle Scholar
  17. 198.
    Kim, S.: Brownian motion in assemblies of coupled harmonic oscillators. J. Math. Phys. 15, 578 (1974). doi:10.1063/1.1666687 CrossRefGoogle Scholar
  18. 205.
    Kupferman, R., Stuart, A., Terry, J., Tupper, P.: Long term behavior of large mechanical systems with random initial data. Stochastics Dyn. 2, 533 (2002). doi:10.1142/S0219493702000571 CrossRefMathSciNetGoogle Scholar
  19. 211.
    Landau, L.D., and Lifshitz, E.M., Statistical Physics (Volume 5, Course of Theoretical Physics), Third Edition, Butterworth-Heinemann (1980), ISBN: 978-0-750-63372-7.Google Scholar
  20. 213.
    Langevin, P.: Sur la théorie de mouvement brownien. C.R. Acad. Sci. Paris 146, 530–533 (1908)zbMATHGoogle Scholar
  21. 223.
    Leimkuhler, B., Matthews, C. and Stoltz G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J Numer Anal (2015). doi: 10.1093/imanum/dru056 Google Scholar
  22. 233.
    Lelièvre, T., Stoltz, G., Rousset, M.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  23. 253.
    Martyna, G., Tuckerman, M., Tobias, D., Klein, M.: Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87(5), 1117–1157 (1996). doi:10.1080/00268979600100761 CrossRefGoogle Scholar
  24. 257.
    Mattingly, J., Stuart, A., Higham, D.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101, 185–232 (2002). doi:10.1016/S0304-4149(02)00150-3
  25. 264.
    McQuarrie, D.A.: Statistical Mechanics. Harper and Row, New York (1976)Google Scholar
  26. 265.
    Melchionna, S.: Design of quasisymplectic propagators for Langevin dynamics. J. Chem. Phys. 127(4), 044108 (2007). doi:10.1063/1.2753496 CrossRefGoogle Scholar
  27. 266.
    Melchionna, S., Ciccotti, G., Holian, B.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78(3), 533–544 (1993). doi:10.1080/00268979300100371 CrossRefGoogle Scholar
  28. 269.
    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2009). ISBN:9781139477970Google Scholar
  29. 279.
    Nelson, E.: Dynamical Theories of Brownian Motion, 2nd edn. Princeton University Press, Princeton (2001). https://web.math.princeton.edu/~nelson/books/bmotion.pdf
  30. 289.
    Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Hochschultext/Universitext. Springer, New York (2003). ISBN:978-3540047582CrossRefGoogle Scholar
  31. 298.
    Pavliotis, G.A.: Stochastic Processes and Applications. Springer, New York (2014), ISBN 978-1-4939-1323-7CrossRefzbMATHGoogle Scholar
  32. 311.
    Ricci, A., Ciccotti, G.: Algorithms for Brownian dynamics. Mol. Phys. 101(12), 1927–1931 (2003). doi:10.1080/0026897031000108113 CrossRefGoogle Scholar
  33. 314.
    Rogers, L., Williams, D.: Diffusions, Markov Processes, and Martingales, 2nd edn. Cambridge University Press, Cambridge (2000). ISBN:978-0521775946CrossRefGoogle Scholar
  34. 319.
    Rugh, H.: Dynamical approach to temperature. Phys. Rev. Lett. 78, 772–774 (1997). doi:10.1103/PhysRevLett.78.772 CrossRefGoogle Scholar
  35. 324.
    Sancho, J., SanMiguel, M., Katz, S., Gunton, J.: Analytical and numerical studies of multiplicative noise. Phys. Rev. A 26, 1589–1609 (1982). doi:10.1103/PhysRevA.26.1589 CrossRefGoogle Scholar
  36. 349.
    Stroock, D.: Lectures on Topics in Stochastic Differential Equations. Tata Institute of Fundamental Research, Bombay. Springer, Berlin (1982)zbMATHGoogle Scholar
  37. 350.
    Stuart, A., Warren, J.: Analysis and experiments for a computational model of a heat bath. J. Stat. Phys. 97, 687 (1999). doi:10.1023/A:1004667325896 CrossRefzbMATHGoogle Scholar
  38. 360.
    Taylor, M.: Partial Differential Equations I: Basic Theory. Applied Functional Analysis: Applications to Mathematical Physics. U.S. Government Printing Office, Washington, DC (1996)CrossRefGoogle Scholar
  39. 364.
    Tien, C., Lienhard, J.: Statistical Thermodynamics, revised edition. Hemisphere, Washington, DC (1979)Google Scholar
  40. 402.
    Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9, 215–220 (1973). doi:10.1007/BF01008729 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Charles Matthews
    • 2
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.Gordon Center for Integrative ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations