The Stability Threshold

  • Ben Leimkuhler
  • Charles Matthews
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 39)


Let us recall the method of studying the asymptotic numerical stability of a linear system \(\displaystyle{ \dot{{\boldsymbol z}} ={\boldsymbol A}{\boldsymbol z}, }\) where \({\boldsymbol z} \in \mathbb{R}^{m}\), \({\boldsymbol A} \in \mathbb{R}^{m\times m}\), when solved by a numerical method.


Rigid Body Newton Iteration Adjoint Method Stability Threshold Angular Momentum Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 12.
    Andersen, H.: Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983). doi:10.1016/0021-9991(83)90014-1
  2. 15.
    Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989). ISBN:978-3540968900CrossRefGoogle Scholar
  3. 17.
    Ascher, U., Reich, S.: The midpoint scheme and variants for Hamiltonian systems: advantages and pitfalls. SIAM J. Numer. Anal. 21, 1045–1065 (1999). doi:10.1137/S1064827597316059 zbMATHMathSciNetGoogle Scholar
  4. 20.
    Bae, D.S., Haug, E.: A recursive formulation for constrained mechanical system dynamics: part I: open loop systems. Mech. Struct. Mach. 15, 359–382 (1987). doi:10.1080/08905458708905124 CrossRefGoogle Scholar
  5. 25.
    Barth, E., Kuczera, K., Leimkuhler, B., Skeel, R.: Algorithms for constrained molecular dynamics. J. Comput. Chem. 16, 1192–1209 (1995). doi:10.1002/jcc.540161003 CrossRefGoogle Scholar
  6. 35.
    Biesiadecki, J., Skeel, R.: Dangers of multiple time step methods. J. Comput. Phys. 109(2), 318–328 (1993). doi:10.1006/jcph.1993.1220 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 67.
    Carter, E., Ciccotti, G., Hynes, J.T., Kapral, R.: Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156(5), 472–477 (1989). doi:10.1016/S0009-2614(89)87314-2
  8. 68.
    Celledoni, E., Fasso, F., Säfström, N., Zanna, A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30(4), 2084–2112 (2008). doi:10.1137/070704393 CrossRefMathSciNetGoogle Scholar
  9. 74.
    Chawla, M.: On the order and attainable intervals of periodicity of explicit nystrom methods for y” = f(t,y). SIAM J. Numer. Anal. 22, 127–131 (1985). doi:10.1137/0722009 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 79.
    Ciccotti, G., Ferrario, M.: Rare events by constrained molecular dynamics. J. Mol. Liq. 89(1–3), 1–18 (2000). doi:10.1016/S0167-7322(00)90001-1
  11. 80.
    Ciccotti, G., Ferrario, M., Ryckaert, J.P.: Molecular dynamics of rigid systems in Cartesian coordinates: a general formulation. Mol. Phys. 47(6), 1253–1264 (1982). doi:10.1080/00268978200100942 CrossRefGoogle Scholar
  12. 83.
    Ciccotti, G., Kapral, R., Vanden-Eijnden, E.: Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6(9), 1809–1814 (2005). doi:10.1002/cphc.200400669 CrossRefGoogle Scholar
  13. 84.
    Ciccotti, G., Ryckaert, J.: Molecular dynamics simulation of rigid molecules. Comput. Phys. Rep. 4, 346–392 (1986). doi:10.1016/0167-7977(86)90022-5
  14. 112.
    Dullweber, A., Leimkuhler, B., McLachlan, R.: Symplectic splitting methods for rigid body molecular dynamics. J. Chem. Phys. 107, 5840–5851 (1997). doi:10.1063/1.474310 CrossRefGoogle Scholar
  15. 119.
    Edberg, R., Evans, D., Morriss, G.: Constrained molecular dynamics: simulations of liquid alkanes with a new algorithm. J. Chem. Phys. 84, 6933–6939 (1986). doi:10.1063/1.450613 CrossRefGoogle Scholar
  16. 141.
    García-Archilla, B., Sanz-Serna, J.M., Skeel, R.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998). doi:10.1137/S1064827596313851 CrossRefGoogle Scholar
  17. 151.
    Goldstein, H., Poole, C., Safco, J.: Classical Mechanics, 3rd edn. Addison Wesley, San Francisco (2002). ISBN:978-0201657029Google Scholar
  18. 152.
    Gonzalez, O., Simo, J.: On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Eng. 134, 197–222 (1995). doi:10.1016/0045-7825(96)01009-2
  19. 158.
    Grubmüller, H., Heller, H., Windemuth, A., Schulten, K.: Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6, 121–142 (1991). doi:10.1080/08927029108022142 CrossRefGoogle Scholar
  20. 164.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, New York (2006). ISBN:978-3-540-30666-5Google Scholar
  21. 175.
    Hess, B., Bekker, H., Berendsen, H., Fraaije, J.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H CrossRefGoogle Scholar
  22. 189.
    Izaguirre, J., Reich, S., Skeel, R.: Longer timesteps for molecular dynamics. J. Chem. Phys. 110, 9853–9865 (1999). doi:10.1063/1.478995 CrossRefGoogle Scholar
  23. 190.
    Jain, A., Vaidehi, N., Rodriguez, G.: A fast recursive algorithm for molecular dynamics simulation. J. Comput. Phys. 106, 258–268 (1993). doi:10.1016/S0021-9991(83)71106-X CrossRefzbMATHGoogle Scholar
  24. 201.
    Kol, A., Laird, B., Leimkuhler, B.: A symplectic method for rigid-body molecular simulation. J. Chem. Phys. 107, 2580–2588 (1997). doi:10.1063/1.474596 CrossRefGoogle Scholar
  25. 206.
    Kuptsov, L.: Brachistochrone. In: Encyclopedia of Mathematics. Springer, New York (2001). ISBN:978-1-556080104Google Scholar
  26. 227.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511614118. ISBN:978-0521772907
  27. 229.
    Leimkuhler, B., Skeel, R.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112, 117–125 (1994). doi:10.1006/jcph.1994.1085 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 245.
    Ma, Q., Izaguirre, J., Skeel, R.: Verlet-I/r-RESPA/Impulse is limited by nonlinear instabilities. SIAM J. Sci. Comput. 24, 1951–1973 (2003). doi:10.1137/S1064827501399833 CrossRefzbMATHMathSciNetGoogle Scholar
  29. 246.
    MacKerell Jr., A., Brooks III, C., Nilsson, L., Roux, B., Won, Y., Karplus, M.: CHARMM: The Energy Function and Its Parameterization with an Overview of the Program. The Encyclopedia of Computational Chemistry, vol. 1, pp. 271–277. Wiley, Chichester (1998).
  30. 247.
    Mandziuk, M., Schlick, T.: Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme. Chem. Phys. Lett. 237, 525–535 (1995). doi:10.1016/0009-2614(95)00316-V CrossRefGoogle Scholar
  31. 249.
    Marsden, J., Ratiu, T.: Mechanics and Symmetry, 2nd edn. Springer, New York (1998). ISBN:978-0387986432Google Scholar
  32. 255.
    Mathiowetz, A., Jain, A., Karasawa, N., III, W.G.: Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Proteins 20, 227–247 (1994). doi:10.1002/prot.340200304
  33. 258.
    McLachlan, R.: Explicit Lie-Poisson integration and the Euler equations. Phys. Rev. Lett. 71, 3043–3046 (1993). doi:10.1103/PhysRevLett.71.3043 CrossRefzbMATHMathSciNetGoogle Scholar
  34. 274.
    Miyamoto, S., Kollman, P.: Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992). doi:10.1002/jcc.540130805 CrossRefGoogle Scholar
  35. 292.
    Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (1970). ISBN:978-0898714616zbMATHGoogle Scholar
  36. 302.
    Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289.
  37. 309.
    Reich, S.: On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer. Math. 76, 231–247 (1997). doi:10.1007/s002110050261 CrossRefzbMATHMathSciNetGoogle Scholar
  38. 322.
    Ryckaert, J., Ciccotti, G., Berendsen, H.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977). doi:10.1016/0021-9991(77)90098-5
  39. 329.
    Schlick, T., Mandziuk, M., Skeel, R., Srinivas, K.: Nonlinear resonance artifacts in molecular dynamics simulations. J. Comput. Phys. 140, 1–29 (1998). doi:10.1006/jcph.1998.5879 CrossRefzbMATHMathSciNetGoogle Scholar
  40. 339.
    Skeel, R., Srinivas, K.: Nonlinear stability analysis of area-preserving integrators. SIAM J. Numer. Anal. 38, 129–148 (2000). doi:10.1137/S0036142998349527 CrossRefzbMATHMathSciNetGoogle Scholar
  41. 368.
    Touma, J., Wisdom, J.: Lie-Poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994). doi:10.1086/116931 CrossRefGoogle Scholar
  42. 374.
    Tuckerman, M., Berne, B.: Molecular dynamics in systems with multiple time scales: systems with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys. 95, 8362–8365 (1991). doi:10.1063/1.461263 CrossRefGoogle Scholar
  43. 375.
    Tuckerman, M., Berne, B., Martyna, G.: Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys. 94, 6811–6815 (1991). doi:10.1063/1.460259 CrossRefGoogle Scholar
  44. 377.
    Tuckerman, M., Martyna, G., Berne, B.: Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys. 93, 1287–1292 (1990). doi:10.1063/1.459140 CrossRefGoogle Scholar
  45. 382.
    van Zon, R., Omelyan, I., Schofield, J.: Efficient algorithms for rigid body integration using optimized splitting methods and exact free rotational motion. J. Chem. Phys. 128(136102) (2008). doi:10.1063/1.2889937
  46. 388.
    Vesely, F.: N-particle dynamics of polarizable Stockmayer-type molecules. J. Comput. Phys. 24, 361–371 (1977). doi:10.1016/0021-9991(77)90028-6
  47. 392.
    Weinbach, Y., Elber, R.: Revisiting and parallelizing SHAKE. J. Comput. Phys. 209, 193–206 (2005). doi:10.1016/ CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Charles Matthews
    • 2
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.Gordon Center for Integrative ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations