Advertisement

Analyzing Geometric Integrators

  • Ben Leimkuhler
  • Charles Matthews
Chapter
  • 3.5k Downloads
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 39)

Abstract

In the previous chapter, we discussed the growth of error in numerical methods for differential equations. We saw that if the time interval is fixed, the error obeys the power law relationship with stepsize that is predicted by the convergence theory. We also saw that this did not contradict the exponential growth in the error with time (when the stepsize is fixed). The latter issue casts doubt on the reliance on the convergence order as a means for assessing the suitability of an integrator for molecular dynamics.

Keywords

Molecular Dynamic Hamiltonian System Poisson Bracket Potential Energy Function Symplectic Integrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 21.
    Bakhturin, Y.A.: Campbell-Hausdorff formula. In: Encyclopedia of Mathematics. Springer, New York (2001). ISBN:978-1556080104Google Scholar
  2. 31.
    Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74, 1117–1143 (1994). doi:10.1007/BF02188219 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 37.
    Blanes, S., Casas, F., Murua, A.: Spliting and composition methods in the numerical integration. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)zbMATHMathSciNetGoogle Scholar
  4. 40.
    Bond, S., Leimkuhler, B.: Molecular dynamics and the accuracy of numerically computed averages. Acta Numerica 16, 1–65 (2007). doi:10.1017/S0962492906280012 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 66.
    Candy, J., Rozmus, W.: A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991). doi:10.1016/0021-9991(91)90299-Z CrossRefzbMATHMathSciNetGoogle Scholar
  6. 97.
    de la Llave, R.: A Tutorial on KAM Theory. American Mathematical Society, Providence (2003). ISBN:978-0821835326Google Scholar
  7. 108.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202, 737–764 (2005). doi:10.1016/j.jcp.2004.08.014 zbMATHMathSciNetGoogle Scholar
  8. 121.
    Engle, R., Skeel, R., Drees, M.: Monitoring energy drift with shadow Hamiltonians. J. Comput. Phys. 206, 432–452 (2005). doi:10.1016/j.jcp.2004.12.009 CrossRefzbMATHMathSciNetGoogle Scholar
  9. 127.
    Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators for the solar system. Celest. Mech. Dyn. Astron. 116, 141–174 (2013). doi:10.1007/s10569-013-9479-6 CrossRefGoogle Scholar
  10. 136.
    Fetecau, R.C., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J. Appl. Dyn. Sys. 2, 381–416 (2003). doi:10.1137/S1111111102406038 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 139.
    Forest, E., Ruth, R.: Fourth-order symplectic integration. Physica D 43, 105–117 (1990). doi:10.1016/0167-2789(90)90019-L CrossRefzbMATHMathSciNetGoogle Scholar
  12. 153.
    Gray, S.K., Noid, D.W., Sumpter, B.G.: Symplectic integrators for large scale molecular dynamics simulations: a comparison of several explicit methods. J. Chem. Phys. 101, 4062–4072 (1994). doi:10.1063/1.467523 CrossRefGoogle Scholar
  13. 162.
    Hairer, E.: Lecture notes on geometric numerical integration (2010). http://www.unige.ch/~hairer/poly_geoint/week3.pdf
  14. 163.
    Hairer, E., Lubich, C.: The lifespan of backward error analysis for numerical integrators. Numer. Math. 76, 441–462 (1997). doi:10.1007/s002110050271 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 164.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, New York (2006). ISBN:978-3-540-30666-5Google Scholar
  16. 166.
    Hairer, E., McLachlan, R., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Modell. Numer. Anal. 43, 631–644 (2009). doi:10.1051/m2an/2009019 CrossRefzbMATHMathSciNetGoogle Scholar
  17. 176.
    Heyes, D.M.: Molecular dynamics simulations of restricted primitive model 1:1 electrolytes. Chem. Phys. 69, 155–163 (1982). doi:10.1016/0301-0104(82)88142-1
  18. 184.
    Houndonougbo, Y., Laird, B., Leimkuhler, B.: A molecular dynamics algorithm for mixed hard-core/continuous potentials. Mol. Phys. 98, 309–316 (2000). doi:10.1080/00268970009483294 CrossRefGoogle Scholar
  19. 209.
    Lamb, J.: Area-preserving dynamics that is not reversible. Phys. A 228 (1996). doi:10.1016/0378-4371(95)00430-0
  20. 227.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511614118. ISBN:978-0521772907
  21. 235.
    Leyendecker, S., Hartmann, C., Koch, M.: Variational collision integrator for polymer chains. J. Comput. Phys. 231, 3896–3911 (2012). doi:10.1016/j.jcp.2012.01.017 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 259.
    McLachlan, R.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995). doi:10.1007/BF01737165 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 260.
    McLachlan, R.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995). doi:10.1137/0916010 CrossRefzbMATHMathSciNetGoogle Scholar
  24. 262.
    McLachlan, R., Quispel, G.R.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 263.
    McNeil, W.J., Madden, W.G.: A new method for the molecular dynamics simulation of hard core molecules. J. Chem. Phys. 76(12), 6221–6226 (1982). doi:10.1063/1.443025 CrossRefGoogle Scholar
  26. 277.
    Murua, A., Sanz-Serna, J.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. A 357, 1079–1100 (1999). doi:10.1098/rsta.1999.0365 CrossRefzbMATHMathSciNetGoogle Scholar
  27. 290.
    Okunbor, D., Skeel, R.: Explicit canonical methods for Hamiltonian systems. Math. Comput. 59, 439–455 (1992). doi:10.1090/S0025-5718-1992-1136225-3 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 308.
    Reich, S.: Enhancing energy conserving methods. BIT 36, 122–134 (1996). doi:10.1007/BF01740549 CrossRefzbMATHMathSciNetGoogle Scholar
  29. 310.
    Reich, S.: Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36, 1549–1570 (1999). doi:10.1137/S0036142997329797 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 326.
    Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994). ISBN:9780412542909CrossRefzbMATHGoogle Scholar
  31. 336.
    Sigurgeirsson, H., Stuart, A., Wan, W.L.: Algorithms for particle-field simulations with collisions. J. Comput. Phys. 172, 766–807 (2001). doi:10.1006/jcph.2001.6858 CrossRefzbMATHGoogle Scholar
  32. 348.
    Stratt, R., Holmgren, S., Chandler, D.: Constrained impulsive molecular dynamics. Mol. Phys. 42(5), 1233–1243 (1981). doi:10.1080/00268978100100921 CrossRefGoogle Scholar
  33. 352.
    Suh, S.H., Mier-y-Teran, L., White, H.S., Davis, H.T.: Molecular dynamics study of the primitive model of 1–3 electrolyte solutions. Chem. Phys. 142, 203–211 (1990). doi:10.1016/0301-0104(90)89081-Z CrossRefGoogle Scholar
  34. 354.
    Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations. Phys. Lett. A 146, 319–323 (1990). doi:10.1016/0375-9601(90)90962-N CrossRefMathSciNetGoogle Scholar
  35. 359.
    Tang, Y.F.: Formal energy of a symplectic scheme for Hamiltonian systems and its applications (I). Comput. Math. Appl. 27, 31–39 (1994). doi:10.1016/0898-1221(94)90083-3
  36. 369.
    Toxvaerd, S.: Hamiltonians for discrete dynamics. Phys. Rev. E 50, 2271–2274 (1994). doi:10.1103/PhysRevE.50.2271 CrossRefGoogle Scholar
  37. 370.
    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959). doi:10.1090/S0002-9939-1959-0108732-6 CrossRefzbMATHMathSciNetGoogle Scholar
  38. 386.
    Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, 2nd edn. Universitext. Springer, New York (2013). ISBN:978-3540609346Google Scholar
  39. 395.
    West, M., Kane, C., Marsden, J., Ortiz, M.: Variational integrators, the newmark scheme, and dissipative systems. In: Proceedings of the International Conference on Differential Equations, pp. 1009–1011. World Scientific, Singapore (2000). ISBN:978-9810243593Google Scholar
  40. 397.
    Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. In: Integrational Algorithms and Classical Mechanics. American Mathematical Society, Providence (1996). ISBN:978-0821802595Google Scholar
  41. 398.
    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990). doi:10.1016/0375-9601(90)90092-3
  42. 400.
    Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134–139 (1988). doi:10.1016/0375-9601(88)90773-6

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Charles Matthews
    • 2
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.Gordon Center for Integrative ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations