Skip to main content

Numerical Integrators

  • Chapter
Molecular Dynamics

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 39))

  • 6454 Accesses

Abstract

At its most basic level, molecular dynamics is about mapping out complicated point sets using trajectories of a system of ordinary differential equations (or, in Chaps. 6–8, a stochastic-differential equation system). The sets are typically defined as the collection of probable states for a certain system. In the case of Hamiltonian dynamics, they are directly associated to a region of the energy landscape. The trajectories are the means by which we efficiently explore the energy surface. In this chapter we address the design of numerical methods to calculate trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Subscripts were used previously to indicate the components of vectors and here they are used to indicate the indexing of timesteps. Although in theory this could lead to some confusion, it normally does not in practice, since we index components in descriptions of details of models and we discuss timesteps in context of defining numerical methods for general classes of systems. Moreover, we use boldface for vectors, so a subscript on a boldface vector indicates a timestep index. When we wish to refer to both the timestep and the component index, we may write z n, i to denote the ith component at timestep n.

  2. 2.

    A variable stepsize is only used where one expects extreme changes in particle velocities over the course of a simulation (see e.g. [75, 390] for examples arising in radiation damage cascades).

  3. 3.

    In the multidimensional setting, Taylor’s theorem states that given a C k+1 function \(f: \mathbb{R}^{m} \rightarrow \mathbb{R}\) and a point \({\boldsymbol z}_{0}\), we have

    $$\displaystyle\begin{array}{rcl} f({\boldsymbol z}) - f({\boldsymbol z}_{0})& =& \nabla f({\boldsymbol z}_{0}) \cdot ({\boldsymbol z} -{\boldsymbol z}_{0}) + f^{(2)}\langle {\boldsymbol z} -{\boldsymbol z}_{ 0},{\boldsymbol z} -{\boldsymbol z}_{0}\rangle + f^{(3)}\langle {\boldsymbol z} -{\boldsymbol z}_{ 0},{\boldsymbol z} -{\boldsymbol z}_{0},{\boldsymbol z} -{\boldsymbol z}_{0}\rangle {}\\ & & \qquad +\ldots f^{(k)}\langle {\boldsymbol z} -{\boldsymbol z}_{ 0},{\boldsymbol z} -{\boldsymbol z}_{0},\ldots,{\boldsymbol z} -{\boldsymbol z}_{0}\rangle + \mathcal{O}(\|{\boldsymbol z} -{\boldsymbol z}_{0}\|^{k+1}) {}\\ \end{array}$$

    where \(\nabla f = \partial f/\partial {\boldsymbol z}\) is the gradient, i.e. a vector with m components, f (2) is the m × m Hessian matrix of f (the matrix whose ij component is 2 f∂ z i ∂ z j ), and \(f^{(2)}\langle {\boldsymbol u},{\boldsymbol v}\rangle\), \({\boldsymbol u},{\boldsymbol v} \in \mathbb{R}^{m}\), represents the quadratic form \({\boldsymbol u}^{T}f^{(2)}{\boldsymbol v}\). In a similar way we interpret f (3) as a tensor which we can think of as a m × m × m triply-indexed array, the ijk element being 3 f∂ z i ∂ z j ∂ z k and

    $$\displaystyle{f^{(3)}\langle {\boldsymbol u},{\boldsymbol v},{\boldsymbol w}\rangle =\sum _{ i=1}^{m}\sum _{ j=1}^{m}\sum _{ k=1}^{m}(\partial ^{3}f/\partial z_{ i}\partial z_{j}\partial z_{k})u_{i}v_{j}w_{k}.}$$
  4. 4.

    This discussion is a great simplification. Any curve which satisfies this equation will represent a “stationary point” (actually, “stationary curve” would be more accurate) of the classical action. Such curves could include smooth local action minimizers, local action maximizers, or “saddle points” of the actional functional in a generalized sense. Deciding whether a given stationary curve is an actual minimizer of the action would require analysis of the second variation (the coefficient of \(\varepsilon ^{2}\) in the expansion above), which introduces additional complexity. For a more comprehensive treatment, see e.g. [210].

  5. 5.

    Rounding error is the error introduced when numbers are forced into the finite word length representation in a typical digital computer. Adding together two “computer numbers,” then rounding, results in another computer number. Rounding errors may accumulate in long computations, but in molecular dynamics they are normally dominated by the much larger “truncation errors” introduced in the process of discretization, that is, due to replacing the differential equation by a difference equation such as the Euler or Verlet method . For an example of the role of rounding error in the context of constrained molecular dynamics, see [237].

  6. 6.

    The term “secular growth” in this context is a reference to the long-term growth of perturbations in celestial mechanics. For example, the precession of the Earth’s polar axis occurs on a long period relative to its orbital motion and much longer period than its rotation, and so may be classed as a secular motion. In the context of molecular simulations, we use this to refer to accumulation of drift that takes the system steadily away from the energy surface.

  7. 7.

    A homeomorphism is a continuous bijection which has a continuous inverse.

References

  1. Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989). ISBN:978-3540968900

    Book  Google Scholar 

  2. Arnold, V.: Ordinary Differential Equations, 2nd edn. Springer, New York (1992). ISBN:978-0262510189

    Google Scholar 

  3. Batcho, P.F., Case, D., Schlick, T.: Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001). doi:10.1063/1.1389854

    Article  Google Scholar 

  4. Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20, 130–139 (1976). doi:10.1016/0021-9991(76)90059-0

  5. Boyce, W., Diprima, R.C.: Elementary Differential Equations, 9th edn. Wiley, New York (2008). ISBN:978-0470039403

    Google Scholar 

  6. Channell, P.: Symplectic integration algorithms. Tech. Rep. AT–6:ATN 83–9, Los Alamos National Laboratory (1983)

    Google Scholar 

  7. Channell, P., Scovel, C.: Symplectic integration of Hamiltonian systems. Nonlinearity 3(2), 231 (1990). doi:10.1088/0951-7715/3/2/001

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, P.H., Avchachov, K., Nordlund, K., Pussi, K.: Molecular dynamics simulation of radiation damage in cacd6 quasicrystal cubic approximant up to 10 keV. J. Chem. Phys. 138(234505) (2013). doi:10.1063/1.4811183

  9. de Vogelaere, R.: Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Tech. Rep. 4, Department of Mathematics, University of Notre Dame (1956)

    Google Scholar 

  10. Feng, K.: On difference schemes and symplectic geometry. In: Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pp. 42–58. Science Press, Beijing (1985)

    Google Scholar 

  11. Feng, K.: Symplectic geometry and numerical methods in fluid dynamics. In: Zhuang, F., Zhu, Y. (eds.) Tenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 264, pp. 1–7. Springer, Berlin/Heidelberg (1986). doi:10.1007/BFb0041762. ISBN:978-3-540-17172-0

    Chapter  Google Scholar 

  12. Feng, K., Qin, M.: Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study. Comput. Phys. Commun. pp. 173–187 (1991). doi:10.1016/0010-4655(91)90170-P

  13. Forest, E., Ruth, R.: Fourth-order symplectic integration. Physica D 43, 105–117 (1990). doi:10.1016/0167-2789(90)90019-L

    Article  MATH  MathSciNet  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, New York (2006). ISBN:978-3-540-30666-5

    Google Scholar 

  15. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer (2009). ISBN:978-3642051630

    Google Scholar 

  16. Hirsch, M., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems and an Introduction to Chaos, 3rd edn. Academic, New York (2012). ISBN:978-0123820105

    Google Scholar 

  17. Lanczos, C.: The Variational Principles of Mechanics. Dover Books on Physics. Dover, New York (1986)

    MATH  Google Scholar 

  18. Landau, L., Lifshitz, E.: Course in Theoretical Physics, Vol I: Mechanics. Pergmanon, Oxford (1976). ISBN:978-0750628969

    Google Scholar 

  19. Lasagni, F.M.: Canonical runge-kutta methods. Zeitschrift für Angewandte Mathematik und Physik 39, 952–953 (1988). doi:10.1007/BF00945133

    Article  MATH  MathSciNet  Google Scholar 

  20. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511614118. ISBN:978-0521772907

  21. Lippert, R., Bowers, K., Dror, R., Eastwood, M., Gregersen, B., Klepeis, J., Kolossvary, I., Shaw, D.: A common, avoidable source of error in molecular dynamics integrators. J. Chem. Phys. 126, 046,101–1 (2007). doi:10.1063/1.2431176

    Google Scholar 

  22. López-Marcos, M., Sanz-Serna, J., Skeel, R.: Explicit symplectic integrators using hessian–vector products. SIAM J. Sci. Comput. 18, 223–238 (1997). doi:10.1137/S1064827595288085

    Article  MATH  MathSciNet  Google Scholar 

  23. Menyuk, C.: Some properties of the discrete Hamiltonian method. Physica D 11, 109–129 (1984). doi:10.1016/0167-2789(84)90438-X

    Article  MATH  MathSciNet  Google Scholar 

  24. Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. ASCE 85, 67–94 (1959)

    Google Scholar 

  25. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (1970). ISBN:978-0898714616

    MATH  Google Scholar 

  26. Reich, S.: Enhancing energy conserving methods. BIT 36, 122–134 (1996). doi:10.1007/BF01740549

    Article  MATH  MathSciNet  Google Scholar 

  27. Rowlands, G.: A numerical algorithm for Hamiltonian systems. J. Comput. Phys. 97, 235–239 (1991). doi:10.1016/0021-9991(91)90046-N

    Article  MATH  MathSciNet  Google Scholar 

  28. Ruth, R.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983). doi:10.1109/TNS.1983.4332919

    Article  Google Scholar 

  29. Sanz-Serna, J.: Runge-Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988). doi:10.1007/BF01954907

    Article  MATH  MathSciNet  Google Scholar 

  30. Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994). ISBN:9780412542909

    Book  MATH  Google Scholar 

  31. Schofield, P.: Computer simulation studies of the liquid state. Comput. Phys. Commun. 5, 17–23 (1973). doi:10.1016/0010-4655(73)90004-0

  32. Suris, Y.: Some properties of methods for the numerical integration of systems of the form \(\ddot{x} = f(x)\). USSR Comput. Math. Math. Phys. 27, 149–156 (1987). doi:10.1016/0041-5553(87)90061-9

  33. Takahashi, M., Imada, M.: Monte Carlo calculation of quantum systems. ii. higher order correction. J. Phys. Soc. Jpn. 53, 3765–3769 (1984). doi:10.1143/JPSJ.53.3765

    Google Scholar 

  34. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012). ISBN:978-0821883280

    Google Scholar 

  35. Verlet, L.: Computer “experiments” on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). doi:10.1103/PhysRev.159.98

  36. Voskoboinikov, R.: Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound. Nucl. Instrum. Methods Phys. Res. Sect. B: 307, 25–28 (2013). doi:10.1016/j.nimb.2012.12.079

    Article  Google Scholar 

  37. West, M., Kane, C., Marsden, J., Ortiz, M.: Variational integrators, the newmark scheme, and dissipative systems. In: Proceedings of the International Conference on Differential Equations, pp. 1009–1011. World Scientific, Singapore (2000). ISBN:978-9810243593

    Google Scholar 

  38. Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. In: Integrational Algorithms and Classical Mechanics. American Mathematical Society, Providence (1996). ISBN:978-0821802595

    Google Scholar 

  39. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990). doi:10.1016/0375-9601(90)90092-3

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leimkuhler, B., Matthews, C. (2015). Numerical Integrators. In: Molecular Dynamics. Interdisciplinary Applied Mathematics, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-16375-8_2

Download citation

Publish with us

Policies and ethics