Advertisement

Numerical Integrators

  • Ben Leimkuhler
  • Charles Matthews
Chapter
  • 3.6k Downloads
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 39)

Abstract

At its most basic level, molecular dynamics is about mapping out complicated point sets using trajectories of a system of ordinary differential equations (or, in Chaps.  6–8, a stochastic-differential equation system). The sets are typically defined as the collection of probable states for a certain system. In the case of Hamiltonian dynamics, they are directly associated to a region of the energy landscape. The trajectories are the means by which we efficiently explore the energy surface. In this chapter we address the design of numerical methods to calculate trajectories.

Keywords

Hamiltonian System Global Error Adjoint Method Energy Error Wedge Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 15.
    Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989). ISBN:978-3540968900CrossRefGoogle Scholar
  2. 16.
    Arnold, V.: Ordinary Differential Equations, 2nd edn. Springer, New York (1992). ISBN:978-0262510189Google Scholar
  3. 29.
    Batcho, P.F., Case, D., Schlick, T.: Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001). doi:10.1063/1.1389854 CrossRefGoogle Scholar
  4. 30.
    Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20, 130–139 (1976). doi:10.1016/0021-9991(76)90059-0
  5. 51.
    Boyce, W., Diprima, R.C.: Elementary Differential Equations, 9th edn. Wiley, New York (2008). ISBN:978-0470039403Google Scholar
  6. 71.
    Channell, P.: Symplectic integration algorithms. Tech. Rep. AT–6:ATN 83–9, Los Alamos National Laboratory (1983)Google Scholar
  7. 72.
    Channell, P., Scovel, C.: Symplectic integration of Hamiltonian systems. Nonlinearity 3(2), 231 (1990). doi:10.1088/0951-7715/3/2/001 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 75.
    Chen, P.H., Avchachov, K., Nordlund, K., Pussi, K.: Molecular dynamics simulation of radiation damage in cacd6 quasicrystal cubic approximant up to 10 keV. J. Chem. Phys. 138(234505) (2013). doi:10.1063/1.4811183
  9. 98.
    de Vogelaere, R.: Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Tech. Rep. 4, Department of Mathematics, University of Notre Dame (1956)Google Scholar
  10. 129.
    Feng, K.: On difference schemes and symplectic geometry. In: Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pp. 42–58. Science Press, Beijing (1985)Google Scholar
  11. 131.
    Feng, K.: Symplectic geometry and numerical methods in fluid dynamics. In: Zhuang, F., Zhu, Y. (eds.) Tenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 264, pp. 1–7. Springer, Berlin/Heidelberg (1986). doi:10.1007/BFb0041762. ISBN:978-3-540-17172-0CrossRefGoogle Scholar
  12. 132.
    Feng, K., Qin, M.: Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study. Comput. Phys. Commun. pp. 173–187 (1991). doi:10.1016/0010-4655(91)90170-P
  13. 139.
    Forest, E., Ruth, R.: Fourth-order symplectic integration. Physica D 43, 105–117 (1990). doi:10.1016/0167-2789(90)90019-L CrossRefzbMATHMathSciNetGoogle Scholar
  14. 164.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, New York (2006). ISBN:978-3-540-30666-5Google Scholar
  15. 167.
    Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer (2009). ISBN:978-3642051630Google Scholar
  16. 177.
    Hirsch, M., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems and an Introduction to Chaos, 3rd edn. Academic, New York (2012). ISBN:978-0123820105Google Scholar
  17. 210.
    Lanczos, C.: The Variational Principles of Mechanics. Dover Books on Physics. Dover, New York (1986)zbMATHGoogle Scholar
  18. 212.
    Landau, L., Lifshitz, E.: Course in Theoretical Physics, Vol I: Mechanics. Pergmanon, Oxford (1976). ISBN:978-0750628969Google Scholar
  19. 214.
    Lasagni, F.M.: Canonical runge-kutta methods. Zeitschrift für Angewandte Mathematik und Physik 39, 952–953 (1988). doi:10.1007/BF00945133 CrossRefzbMATHMathSciNetGoogle Scholar
  20. 227.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511614118. ISBN:978-0521772907
  21. 237.
    Lippert, R., Bowers, K., Dror, R., Eastwood, M., Gregersen, B., Klepeis, J., Kolossvary, I., Shaw, D.: A common, avoidable source of error in molecular dynamics integrators. J. Chem. Phys. 126, 046,101–1 (2007). doi:10.1063/1.2431176 Google Scholar
  22. 239.
    López-Marcos, M., Sanz-Serna, J., Skeel, R.: Explicit symplectic integrators using hessian–vector products. SIAM J. Sci. Comput. 18, 223–238 (1997). doi:10.1137/S1064827595288085 CrossRefzbMATHMathSciNetGoogle Scholar
  23. 267.
    Menyuk, C.: Some properties of the discrete Hamiltonian method. Physica D 11, 109–129 (1984). doi:10.1016/0167-2789(84)90438-X CrossRefzbMATHMathSciNetGoogle Scholar
  24. 280.
    Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. ASCE 85, 67–94 (1959)Google Scholar
  25. 292.
    Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (1970). ISBN:978-0898714616zbMATHGoogle Scholar
  26. 308.
    Reich, S.: Enhancing energy conserving methods. BIT 36, 122–134 (1996). doi:10.1007/BF01740549 CrossRefzbMATHMathSciNetGoogle Scholar
  27. 316.
    Rowlands, G.: A numerical algorithm for Hamiltonian systems. J. Comput. Phys. 97, 235–239 (1991). doi:10.1016/0021-9991(91)90046-N CrossRefzbMATHMathSciNetGoogle Scholar
  28. 320.
    Ruth, R.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983). doi:10.1109/TNS.1983.4332919 CrossRefGoogle Scholar
  29. 325.
    Sanz-Serna, J.: Runge-Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988). doi:10.1007/BF01954907 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 326.
    Sanz-Serna, J., Calvo, M.: Numerical Hamiltonian Problems. Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994). ISBN:9780412542909CrossRefzbMATHGoogle Scholar
  31. 331.
    Schofield, P.: Computer simulation studies of the liquid state. Comput. Phys. Commun. 5, 17–23 (1973). doi:10.1016/0010-4655(73)90004-0
  32. 353.
    Suris, Y.: Some properties of methods for the numerical integration of systems of the form \(\ddot{x} = f(x)\). USSR Comput. Math. Math. Phys. 27, 149–156 (1987). doi:10.1016/0041-5553(87)90061-9
  33. 355.
    Takahashi, M., Imada, M.: Monte Carlo calculation of quantum systems. ii. higher order correction. J. Phys. Soc. Jpn. 53, 3765–3769 (1984). doi:10.1143/JPSJ.53.3765 Google Scholar
  34. 362.
    Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012). ISBN:978-0821883280Google Scholar
  35. 387.
    Verlet, L.: Computer “experiments” on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). doi:10.1103/PhysRev.159.98
  36. 390.
    Voskoboinikov, R.: Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound. Nucl. Instrum. Methods Phys. Res. Sect. B: 307, 25–28 (2013). doi:10.1016/j.nimb.2012.12.079 CrossRefGoogle Scholar
  37. 395.
    West, M., Kane, C., Marsden, J., Ortiz, M.: Variational integrators, the newmark scheme, and dissipative systems. In: Proceedings of the International Conference on Differential Equations, pp. 1009–1011. World Scientific, Singapore (2000). ISBN:978-9810243593Google Scholar
  38. 397.
    Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. In: Integrational Algorithms and Classical Mechanics. American Mathematical Society, Providence (1996). ISBN:978-0821802595Google Scholar
  39. 398.
    Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990). doi:10.1016/0375-9601(90)90092-3

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Charles Matthews
    • 2
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.Gordon Center for Integrative ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations