Skip to main content

Introduction

  • Chapter
Molecular Dynamics

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 39))

Abstract

Molecular dynamics is the study of how molecules move, deform and interact over time. Predicting or interpreting these changes is essential in chemistry, physics, biology, engineering and other fields. This book discusses the foundations of the numerical methods that are used for studying molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Building such a structure from microscopy data is complicated as one must first assemble the pentamer-hexamer frame and optimize the local hexamer and pentamer structural units (i.e. locate the atoms within the structure), using several levels of atomistic force fields (including also quantum-mechanical-molecular mechanical treatments). The last stage is a GPU-accelerated simulation involving 64M atoms for 200 ns using (a) r-RESPA multiple timestepping (See Chap. 4), and (b) constrained bonds to hydrogen atoms (Chap. 4), in (c) a constant temperature and pressure framework (see Chap. 8). (Details provided by one of the authors of the study, J. Perilla of the Theoretical and Computational Biophysics Group, University of Illinois.)

  2. 2.

    In fact, many results and estimates given in this book technically require greater smoothness, but in practice discontinuity in second or higher derivatives of the potential at a single point does not usually cause great difficulty.

  3. 3.

    We use roman (non-italic) letters for parameters that describe the thermodynamic state, e.g. number of degrees of freedom, the volume, the energy, the temperature or the pressure.

  4. 4.

    For readers conversant with concepts of statistical mechanics and in preparation for later discussions, we emphasize that the concept of mechanical equilibrium given in relation to the system of ordinary differential equation (1.6) is entirely different from the notion of statistical or thermal equilibrium of Chap. 6.

  5. 5.

    The Lennard-Jones Trimer is included as an example in the MD.M package, see http://MolecularDynamics.info

  6. 6.

    Note that in periodic boundary conditions the linear momentum would also be preserved, but the angular momentum is not.

  7. 7.

    The Anisotropic Oscillator is included as an example in the MD.M package, see http://MolecularDynamics.info

References

  1. Alder, B., Wainwright, T.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957). doi:10.1063/1.1743957

    Article  Google Scholar 

  2. Alder, B., Wainwright, T.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959). doi:10.1063/1.1730376

    MathSciNet  Google Scholar 

  3. Allinger, N.L., Chen, K., Lii, J.H.: An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 17(5-6), 642–668 (1996). doi:10.1002/(SICI)1096-987X(199604)17:5/6¡642::AID-JCC6¿3.0.CO;2-U

    Article  Google Scholar 

  4. Allinger, N.L., Yuh, Y.H., Lii, J.H.: Molecular mechanics. the MM3 force field for hydrocarbons 1. J. Am. Chem. Soc. 111(23), 8551–8566 (1989). doi:10.1021/ja00205a001

  5. Bartók, A., Payne, M., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136,403 (2010). doi:10.1103/PhysRevLett.104.136403

  6. Brauer, F., Nohel, J.: The Qualitative Theory of Ordinary Differential Equations: An Introduction. Dover Books on Mathematics Series. Dover, New York (1989)

    Google Scholar 

  7. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983). doi:10.1002/jcc.540040211

    Article  Google Scholar 

  8. Brooks III, C., Karplus, M., Pettitt, B.: Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics. Advances in Chemical Physics, vol. 71. Wiley, New York (1988). ISBN:ISBN 0-471-62801-8

    Google Scholar 

  9. Buckingham, R.A.: The classical equation of state of gaseous helium, neon and argon. Proc. R. Soc. Lond. 168, 264–283 (1938). doi:10.1098/rspa.1938.0173

    Article  Google Scholar 

  10. Ciccotti, G., Kapral, R.: Molecular dynamics: an account of its evolution. In: Theory and Applications of Computational Chemistry: The First Forty Years. Elsevier, Amsterdam (2005)

    Google Scholar 

  11. Corbera, M., Llibre, J., Pérez-Chavela, E.: Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celest. Mech. Dyn. Astron. 89, 235–266 (2004). doi:10.1023/B:CELE.0000038600.74660.34

    Article  MATH  Google Scholar 

  12. Daw, M., Foiles, S., Baskes, M.: The embedded-atom method: a review of theory and applications. Mater. Sci. Eng. Rep. 9, 251–310 (1993). doi:10.1016/0920-2307(93)90001-U

  13. DeKock, R.: Chemical Structure. University Science Books, Sausalito, CA (1989)

    Google Scholar 

  14. Devaney, R.: Dynamics of simple maps. Proc. Symp. Appl. Math. 39, 1–24 (1989). ISBN:978-0821801376

    Google Scholar 

  15. Dieci, L., Van Vleck, E.: Software for Lyapunov exponent calculation. http://www.math.ku.edu/~evanvleck/software_les.html. Accessed 14 May 2013

  16. Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. Series A 123, 714–733 (1929). doi:10.1098/rspa.1929.0094

    Article  MATH  Google Scholar 

  17. Donev, A., Garcia, A.L., Alder, B.J.: Stochastic event-driven molecular dynamics. J. Comput. Phys. 227, 2644–2665 (2008). doi:10.1016/j.jcp.2007.11.010

    Article  MATH  Google Scholar 

  18. van Duin, A., Dasgupta, S., Lorant, F., Goddard, W.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001). doi:10.1021/jp004368u

    Article  Google Scholar 

  19. Ehlich, R., Campbell, E., Knospe, O., Schmidt, R.: Collisional dynamics of c60 with noble-gas-atoms studied by molecular dynamics with empirical two- and three-body forces. Zeitschrift für Physik D 28, 153–161 (1993). doi:10.1007/BF01436983

    Article  Google Scholar 

  20. Fennell, C., Gezelter, J.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124(234104) (2006). doi:10.1063/1.2206581

  21. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Oxford University Press, Oxford (2001). ISBN:978-0122673511

    Google Scholar 

  22. Gay, J., Berne, B.: Modification of the overlap potential to mimic a linear site–site potential. J. Chem. Phys. 74(6), 3316–3319 (1981). doi:10.1063/1.441483

    Article  Google Scholar 

  23. Germann, T., Kadau, K.: Trillion-atom molecular dynamics becomes a reality. Int. J. Modern Phys. C 19, 1315–1319 (2008). doi:10.1142/S0129183108012911

    Article  MATH  Google Scholar 

  24. Giardina, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 145(4), 787–811 (2011). doi:10.1007/s10955-011-0350-4

    Article  MATH  MathSciNet  Google Scholar 

  25. Hansson, T., Oostenbrink, C., van Gunsteren, W.: Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12(2), 190–196 (2002). doi:10.1016/S0959-440X(02)00308-1

  26. Hirsch, M., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems and an Introduction to Chaos, 3rd edn. Academic, New York (2012). ISBN:978-0123820105

    Google Scholar 

  27. Isgro, T.A., Sotomayor, M., Cruz-Chu, E.: Case study: water and ice. http://www.ks.uiuc.edu/Training/CaseStudies/pdfs/water-1.pdf. Accessed 14 Oct 2014

  28. Kaur, N., Gupta, S., Dharamvir, K., Jindal, V.: The formation of dimerized molecules of C60 and their solids. Carbon 46, 349–358 (2008). doi:10.1016/j.carbon.2007.12.001

    Article  Google Scholar 

  29. Khaliullin, R., Eshet, H., Kühne, T., Behler, J., Parrinello, M.: Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011). doi:10.1038/nmat3078

    Article  Google Scholar 

  30. Lebovitz, N.: Ordinary Differential Equations. Brooks/Cole, Pacific Grove, CA (1999). ISBN:978-0534365523

    Google Scholar 

  31. LeSar, R.: Introduction to Computational Materials Science. Cambridge University Press, Cambridge (2013). ISBN:9780521845878

    Book  Google Scholar 

  32. Lopreore, C., Wyatt, R.: Quantum wave packet dynamics with trajectories. Phys. Rev. Lett. 82, 5190–5193 (1999). doi:10.1103/PhysRevLett.82.5190

    Article  Google Scholar 

  33. Lupo, J.A., Wang, Z., McKenney, A.M., Pachter, R., Mattson, W.: A large scale molecular dynamics simulation code using the fast multipole algorithm (FMD): performance and application. J. Mol. Graph. Model. 21(2), 89–99 (2002). doi:10.1016/S1093-3263(02)00125-0

    Google Scholar 

  34. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998). doi:10.1021/jp972543+

  35. Mirsky, L.: An Introduction to Linear Algebra. Dover Books on Mathematics Series. Dover, New York (1990)

    MATH  Google Scholar 

  36. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). doi:10.1137/S00361445024180

    Article  MATH  MathSciNet  Google Scholar 

  37. Pettifor, D., Oleinik, I.: Analytic bond-order potentials beyond Tersoff-Brenner. i. Theory. Phys. Rev. B 59, 8487–8499 (1999). doi:10.1103/PhysRevB.59.8487

  38. Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289. http://www.ks.uiuc.edu/Research/namd/

  39. Poincaré, H.: Science et Méthode. Flammarion, Paris (1908)

    Google Scholar 

  40. Price, S.L.: Toward More Accurate Model Intermolecular Potentials for Organic Molecules, pp. 225–289. Wiley, New York (2007). doi:10.1002/9780470125915.ch4

  41. Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411 (1964). doi:10.1103/PhysRev.136.A405

    Article  Google Scholar 

  42. Ruelle, D.: Chance and Chaos. Princeton University Press, Princeton, NJ (1993). ISBN:978-0691021003

    Google Scholar 

  43. Ryckaert, J., Bellemans, A.: Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 30, 123–125 (1975). doi:10.1016/0009-2614(75)85513-8

  44. Schlick, T.: Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biology Reports pp. 1–51 (2009). doi:10.3410/B1-51

  45. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics), 2nd edn. Springer, New York (2010). ISBN:978-1441963505

    Book  Google Scholar 

  46. Smit, B., Karaborni, S., Siepmann, J.: Computer simulations of vapor-liquid phase equilibria of n-alkanes. J. Chem. Phys. 102, 2126–2141 (1995). doi:10.1063/1.469563

    Article  Google Scholar 

  47. Sprott, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003). ISBN:978-0198508397

    MATH  Google Scholar 

  48. Stillinger, F., Weber, T.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985). doi:10.1103/PhysRevB.31.5262

    Article  Google Scholar 

  49. Stockmayer, W.H.: Second virial coefficients of polar gas mixtures. J. Chem. Phys. 9, 863–870 (1941). doi:10.1063/1.1750858

    Article  Google Scholar 

  50. Stoddard, S.D., Ford, J.: Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys. Rev. A 8, 1504–1512 (1973). doi:10.1103/PhysRevA.8.1504

    Article  Google Scholar 

  51. Su, J.: An electron force field for simulating large scale excited electron dynamics (2007). Ph.D. Thesis, California Institute of Technology

    Google Scholar 

  52. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988). doi:10.1103/PhysRevB.37.6991

    Article  Google Scholar 

  53. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012). ISBN:978-0821883280

    Google Scholar 

  54. Tsige, M., Curro, J.G., Grest, G.S., McCoy, J.D.: Molecular dynamics simulations and integral equation theory of alkane chains: comparison of explicit and united atom models. Macromolecules 36(6), 2158–2164 (2003). doi:10.1021/ma0212543

    Article  Google Scholar 

  55. Tully, J., Preston, R.: Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H + with D 2. J. Chem. Phys. 55, 562–572 (1971). doi:10.1063/1.1675788

    Article  Google Scholar 

  56. Verlet, L.: Computer “experiments” on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). doi:10.1103/PhysRev.159.98

  57. Volkov, A., Shiga, T., Nicholson, D., Shiomi, J., Zhigilei, L.: Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. J. Appl. Phys. 111, 053,501 (2012). doi:10.1063/1.3687943

  58. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P.: A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106(3), 765–784 (1984). doi:10.1021/ja00315a051

    Article  Google Scholar 

  59. Zhao, G., Perilla, J., Yufenyuy, E., X. Meng, B.C., Ning, J., Ahn, J., Gronenborn, A., Schulten, K., Aiken, C., Zhang, P.: Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013). doi:10.1038/nature12162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leimkuhler, B., Matthews, C. (2015). Introduction. In: Molecular Dynamics. Interdisciplinary Applied Mathematics, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-16375-8_1

Download citation

Publish with us

Policies and ethics