• Ben Leimkuhler
  • Charles Matthews
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 39)


Molecular dynamics is the study of how molecules move, deform and interact over time. Predicting or interpreting these changes is essential in chemistry, physics, biology, engineering and other fields. This book discusses the foundations of the numerical methods that are used for studying molecular dynamics.


Molecular Dynamic Equilibrium Point Lyapunov Exponent Potential Energy Function Pauli Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    Alder, B., Wainwright, T.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957). doi:10.1063/1.1743957 CrossRefGoogle Scholar
  2. 5.
    Alder, B., Wainwright, T.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959). doi:10.1063/1.1730376 MathSciNetGoogle Scholar
  3. 9.
    Allinger, N.L., Chen, K., Lii, J.H.: An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 17(5-6), 642–668 (1996). doi:10.1002/(SICI)1096-987X(199604)17:5/6¡642::AID-JCC6¿3.0.CO;2-UCrossRefGoogle Scholar
  4. 10.
    Allinger, N.L., Yuh, Y.H., Lii, J.H.: Molecular mechanics. the MM3 force field for hydrocarbons 1. J. Am. Chem. Soc. 111(23), 8551–8566 (1989). doi:10.1021/ja00205a001
  5. 27.
    Bartók, A., Payne, M., Kondor, R., Csányi, G.: Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136,403 (2010). doi:10.1103/PhysRevLett.104.136403
  6. 52.
    Brauer, F., Nohel, J.: The Qualitative Theory of Ordinary Differential Equations: An Introduction. Dover Books on Mathematics Series. Dover, New York (1989)Google Scholar
  7. 53.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983). doi:10.1002/jcc.540040211 CrossRefGoogle Scholar
  8. 54.
    Brooks III, C., Karplus, M., Pettitt, B.: Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics. Advances in Chemical Physics, vol. 71. Wiley, New York (1988). ISBN:ISBN 0-471-62801-8Google Scholar
  9. 56.
    Buckingham, R.A.: The classical equation of state of gaseous helium, neon and argon. Proc. R. Soc. Lond. 168, 264–283 (1938). doi:10.1098/rspa.1938.0173 CrossRefGoogle Scholar
  10. 82.
    Ciccotti, G., Kapral, R.: Molecular dynamics: an account of its evolution. In: Theory and Applications of Computational Chemistry: The First Forty Years. Elsevier, Amsterdam (2005)Google Scholar
  11. 87.
    Corbera, M., Llibre, J., Pérez-Chavela, E.: Equilibrium points and central configurations for the Lennard-Jones 2- and 3-body problems. Celest. Mech. Dyn. Astron. 89, 235–266 (2004). doi:10.1023/B:CELE.0000038600.74660.34 CrossRefzbMATHGoogle Scholar
  12. 95.
    Daw, M., Foiles, S., Baskes, M.: The embedded-atom method: a review of theory and applications. Mater. Sci. Eng. Rep. 9, 251–310 (1993). doi:10.1016/0920-2307(93)90001-U
  13. 100.
    DeKock, R.: Chemical Structure. University Science Books, Sausalito, CA (1989)Google Scholar
  14. 103.
    Devaney, R.: Dynamics of simple maps. Proc. Symp. Appl. Math. 39, 1–24 (1989). ISBN:978-0821801376Google Scholar
  15. 105.
    Dieci, L., Van Vleck, E.: Software for Lyapunov exponent calculation. Accessed 14 May 2013
  16. 106.
    Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. Series A 123, 714–733 (1929). doi:10.1098/rspa.1929.0094 CrossRefzbMATHGoogle Scholar
  17. 107.
    Donev, A., Garcia, A.L., Alder, B.J.: Stochastic event-driven molecular dynamics. J. Comput. Phys. 227, 2644–2665 (2008). doi:10.1016/ CrossRefzbMATHGoogle Scholar
  18. 111.
    van Duin, A., Dasgupta, S., Lorant, F., Goddard, W.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001). doi:10.1021/jp004368u CrossRefGoogle Scholar
  19. 120.
    Ehlich, R., Campbell, E., Knospe, O., Schmidt, R.: Collisional dynamics of c60 with noble-gas-atoms studied by molecular dynamics with empirical two- and three-body forces. Zeitschrift für Physik D 28, 153–161 (1993). doi:10.1007/BF01436983 CrossRefGoogle Scholar
  20. 134.
    Fennell, C., Gezelter, J.: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124(234104) (2006). doi:10.1063/1.2206581
  21. 140.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Oxford University Press, Oxford (2001). ISBN:978-0122673511Google Scholar
  22. 143.
    Gay, J., Berne, B.: Modification of the overlap potential to mimic a linear site–site potential. J. Chem. Phys. 74(6), 3316–3319 (1981). doi:10.1063/1.441483 CrossRefGoogle Scholar
  23. 145.
    Germann, T., Kadau, K.: Trillion-atom molecular dynamics becomes a reality. Int. J. Modern Phys. C 19, 1315–1319 (2008). doi:10.1142/S0129183108012911 CrossRefzbMATHGoogle Scholar
  24. 146.
    Giardina, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 145(4), 787–811 (2011). doi:10.1007/s10955-011-0350-4 CrossRefzbMATHMathSciNetGoogle Scholar
  25. 169.
    Hansson, T., Oostenbrink, C., van Gunsteren, W.: Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12(2), 190–196 (2002). doi:10.1016/S0959-440X(02)00308-1
  26. 177.
    Hirsch, M., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems and an Introduction to Chaos, 3rd edn. Academic, New York (2012). ISBN:978-0123820105Google Scholar
  27. 187.
    Isgro, T.A., Sotomayor, M., Cruz-Chu, E.: Case study: water and ice. Accessed 14 Oct 2014
  28. 195.
    Kaur, N., Gupta, S., Dharamvir, K., Jindal, V.: The formation of dimerized molecules of C60 and their solids. Carbon 46, 349–358 (2008). doi:10.1016/j.carbon.2007.12.001 CrossRefGoogle Scholar
  29. 196.
    Khaliullin, R., Eshet, H., Kühne, T., Behler, J., Parrinello, M.: Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011). doi:10.1038/nmat3078 CrossRefGoogle Scholar
  30. 216.
    Lebovitz, N.: Ordinary Differential Equations. Brooks/Cole, Pacific Grove, CA (1999). ISBN:978-0534365523Google Scholar
  31. 234.
    LeSar, R.: Introduction to Computational Materials Science. Cambridge University Press, Cambridge (2013). ISBN:9780521845878CrossRefGoogle Scholar
  32. 240.
    Lopreore, C., Wyatt, R.: Quantum wave packet dynamics with trajectories. Phys. Rev. Lett. 82, 5190–5193 (1999). doi:10.1103/PhysRevLett.82.5190 CrossRefGoogle Scholar
  33. 242.
    Lupo, J.A., Wang, Z., McKenney, A.M., Pachter, R., Mattson, W.: A large scale molecular dynamics simulation code using the fast multipole algorithm (FMD): performance and application. J. Mol. Graph. Model. 21(2), 89–99 (2002). doi:10.1016/S1093-3263(02)00125-0Google Scholar
  34. 250.
    Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998). doi:10.1021/jp972543+
  35. 273.
    Mirsky, L.: An Introduction to Linear Algebra. Dover Books on Mathematics Series. Dover, New York (1990)zbMATHGoogle Scholar
  36. 275.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003). doi:10.1137/S00361445024180 CrossRefzbMATHMathSciNetGoogle Scholar
  37. 300.
    Pettifor, D., Oleinik, I.: Analytic bond-order potentials beyond Tersoff-Brenner. i. Theory. Phys. Rev. B 59, 8487–8499 (1999). doi:10.1103/PhysRevB.59.8487
  38. 302.
    Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289.
  39. 304.
    Poincaré, H.: Science et Méthode. Flammarion, Paris (1908)Google Scholar
  40. 305.
    Price, S.L.: Toward More Accurate Model Intermolecular Potentials for Organic Molecules, pp. 225–289. Wiley, New York (2007). doi:10.1002/9780470125915.ch4
  41. 306.
    Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411 (1964). doi:10.1103/PhysRev.136.A405 CrossRefGoogle Scholar
  42. 318.
    Ruelle, D.: Chance and Chaos. Princeton University Press, Princeton, NJ (1993). ISBN:978-0691021003Google Scholar
  43. 321.
    Ryckaert, J., Bellemans, A.: Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 30, 123–125 (1975). doi:10.1016/0009-2614(75)85513-8
  44. 327.
    Schlick, T.: Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biology Reports pp. 1–51 (2009). doi:10.3410/B1-51
  45. 328.
    Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics), 2nd edn. Springer, New York (2010). ISBN:978-1441963505CrossRefGoogle Scholar
  46. 340.
    Smit, B., Karaborni, S., Siepmann, J.: Computer simulations of vapor-liquid phase equilibria of n-alkanes. J. Chem. Phys. 102, 2126–2141 (1995). doi:10.1063/1.469563 CrossRefGoogle Scholar
  47. 343.
    Sprott, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003). ISBN:978-0198508397zbMATHGoogle Scholar
  48. 344.
    Stillinger, F., Weber, T.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985). doi:10.1103/PhysRevB.31.5262 CrossRefGoogle Scholar
  49. 345.
    Stockmayer, W.H.: Second virial coefficients of polar gas mixtures. J. Chem. Phys. 9, 863–870 (1941). doi:10.1063/1.1750858 CrossRefGoogle Scholar
  50. 346.
    Stoddard, S.D., Ford, J.: Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys. Rev. A 8, 1504–1512 (1973). doi:10.1103/PhysRevA.8.1504 CrossRefGoogle Scholar
  51. 351.
    Su, J.: An electron force field for simulating large scale excited electron dynamics (2007). Ph.D. Thesis, California Institute of TechnologyGoogle Scholar
  52. 361.
    Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988). doi:10.1103/PhysRevB.37.6991 CrossRefGoogle Scholar
  53. 362.
    Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012). ISBN:978-0821883280Google Scholar
  54. 371.
    Tsige, M., Curro, J.G., Grest, G.S., McCoy, J.D.: Molecular dynamics simulations and integral equation theory of alkane chains: comparison of explicit and united atom models. Macromolecules 36(6), 2158–2164 (2003). doi:10.1021/ma0212543 CrossRefGoogle Scholar
  55. 378.
    Tully, J., Preston, R.: Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H + with D 2. J. Chem. Phys. 55, 562–572 (1971). doi:10.1063/1.1675788 CrossRefGoogle Scholar
  56. 387.
    Verlet, L.: Computer “experiments” on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). doi:10.1103/PhysRev.159.98
  57. 389.
    Volkov, A., Shiga, T., Nicholson, D., Shiomi, J., Zhigilei, L.: Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. J. Appl. Phys. 111, 053,501 (2012). doi:10.1063/1.3687943
  58. 394.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P.: A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106(3), 765–784 (1984). doi:10.1021/ja00315a051 CrossRefGoogle Scholar
  59. 399.
    Zhao, G., Perilla, J., Yufenyuy, E., X. Meng, B.C., Ning, J., Ahn, J., Gronenborn, A., Schulten, K., Aiken, C., Zhang, P.: Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013). doi:10.1038/nature12162 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ben Leimkuhler
    • 1
  • Charles Matthews
    • 2
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK
  2. 2.Gordon Center for Integrative ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations