Skip to main content

Symbiosis Between Non-Transferable Plasmids and Prokaryotic Cells

  • Chapter
  • First Online:
Book cover Reticulate Evolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 3))

  • 1122 Accesses

Abstract

Plasmids are common in the prokaryotic world, both in bacteria and archaea. Most of these extrachromosomal DNA molecules do not code for essential genes. One may expect that the replication of plasmids and the expression of plasmidic genes impose a fitness cost to their host. Given this cost, and given that plasmid-free cells often arise, it is striking that so many non-transferable plasmids are able to maintain themselves inside prokaryotic cells without being counter-selected in favor of plasmid-free cells. A solution to this paradox would be the evolution of controlling mechanisms to regulate rivalry between plasmids for the stability of these symbiotic relationships. In this chapter, we discuss the evolutionary selective conditions for such mechanisms to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Kennedy N, Skurray R (1977) Cell–cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc Natl Acad Sci USA 74:5104–5108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Austin S, Abeles A (1983a) Partition of unit-copy miniplasmids to daughter cells I: P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J Mol Biol 169:353–372

    Article  CAS  PubMed  Google Scholar 

  • Austin S, Abeles A (1983b) Partition of unit-copy miniplasmids to daughter cells II: the partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J Mol Biol 169:373–387

    Article  CAS  PubMed  Google Scholar 

  • Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the metabolic burden associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  CAS  PubMed  Google Scholar 

  • Bouma JE, Lenski RE (1988) Evolution of a bacteria plasmid association. Nature 335:351–352

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ (1994) Perspective—virulence. Evolution 48:1423–1437

    Article  Google Scholar 

  • Campbell AM (1996) Bacteriophages. In: Neidhart FC et al. (eds) Escherichia coli and Salmonella—cellular and molecular biology. American Society for Microbiology, Washinghton

    Google Scholar 

  • Chao L,Hanley KA, Burch CL, Dahlberg C, Turner PE (2000) Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol 75:261-275

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg C, Chao L (2003) Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165:1641–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz Ricci JC, Hernandez ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20:79–108

    Article  CAS  PubMed  Google Scholar 

  • Dionisio F, Gordo I (2006) The tragedy of the commons, the public goods dilemma, and the meaning of rivalry and excludability in evolutionary biology. Evol Ecol Res 8:321–332

    Google Scholar 

  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:1525–1532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dionisio F, Conceicao IC, Marques ACR, Fernandes L, Gordo I (2005) The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 1:250–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dionisio F, Nogueira T, Carvalho LM, Mendes-Soares H, Mendonça SCM, Domingues I, Moreira B, Reis AM (2012) What maintains plasmids among bacteria? In: Francino MP (ed) Horizontal gene transfer in microorganisms. Caister Academic Press, Norwich, pp 131–154

    Google Scholar 

  • Frank SA (1995) Mutual policing and repression of competition in the evolution of cooperative groups. Nature 377:520–522

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (1996) Models of parasite virulence. Q Rev Biol 71:37–78

    Article  CAS  PubMed  Google Scholar 

  • Garcillan-Barcia MP, de la Cruz F (2008) Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 60:1–18

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM (1992) Rate of plasmid transfer among Escherichia-coli strains isolated from natural-populations. J Gen Microbiol 138:17–21

    Article  CAS  PubMed  Google Scholar 

  • Harrison E, Koufopanou V, Burt A, MacLean RC (2012) The cost of copy number in a selfish genetic element: the 2-mum plasmid of Saccharomyces cerevisiae. J Evol Biol 25:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Kentzoglanakis K, Lopez DG, Brown SP, Goldstein RA (2013) the evolution of collective restraint: policing and obedience among non-conjugative plasmids. PLoS Comput Biol 9(4):e1003036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurono N, Matsuda A, Etchuya R, Sobue R, Sasaki Y, Ito M, Ando T, Maeda S (2012) Genome-wide screening of Escherichia coli genes involved in execution and promotion of cell-to-cell transfer of non-conjugative plasmids: rodZ (yfgA) is essential for plasmid acceptance in recipient cells. Biochem Biophys Res Commun 421:119–123

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE (1997) The cost of antibiotic resistance—from the perspective of a bacterium. Ciba F Symp 207:131–140

    CAS  Google Scholar 

  • Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467:174–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin BR (1996) The evolution and maintenance of virulence in microparasites. Emerg Infect Dis 2:93–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin BR, Bergstrom CT (2000) Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci USA 97:6981–6985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255:115–120

    Article  CAS  PubMed  Google Scholar 

  • Matsuda A, Kurono N, Kawano C, Shirota K, Hirabayashi A, Horino M, Etchuya R, Sobue R, Sasaki Y, Miyaue S et al (2012) Genome-wide screen for Escherichia coli genes involved in repressing cell-to-cell transfer of non-conjugative plasmids. Biochem Biophys Res Commun 428:445–450

    Article  CAS  PubMed  Google Scholar 

  • Mc Ginty SE, Rankin DJ, Brown SP (2011) Horizontal gene transfer and the evolution of bacterial cooperation. Evolution 65:21–32

    Article  PubMed Central  PubMed  Google Scholar 

  • Mc Ginty SE, Lehmann L, Brown SP, Rankin DJ (2013) The interplay between relatedness and horizontal gene transfer drives the evolution of plasmid-carried public goods. Proc R Soc B Biol Sci 280(1761):20130400

    Google Scholar 

  • Messenger SL, Molineux IJ, Bull JJ (1999) Virulence evolution in a virus obeys a trade-off. Proc R Soc Lond Ser B-Biol Sci 266:397–404

    Article  CAS  Google Scholar 

  • Modi RI, Adams J (1991) Coevolution in bacterial-plasmid populations. Evolution 45:656–667

    Article  Google Scholar 

  • Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP, Rocha EPC (2009) Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 19:1683–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nordstrom K (2006) Plasmid R1—replication and its control. Plasmid 55:1–26

    Article  PubMed  Google Scholar 

  • Nordstrom K, Austin SJ (1989) Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69

    Article  CAS  PubMed  Google Scholar 

  • Nordström K, Cohen S, Simons R (1996) Antisense RNA. In: Resnekov O, Gabain A (eds) Post-transcriptional control of gene expression. Springer, Berlin, pp 231–261

    Chapter  Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    Article  CAS  PubMed  Google Scholar 

  • Paulsson J (2002) Multileveled selection on plasmid replication. Genetics 161:1373–1384

    PubMed Central  PubMed  Google Scholar 

  • Paulsson J, Ehrenberg M (2001) Noise in a minimal regulatory network: plasmid copy number control. Q Rev Biophys 34:1–59

    Article  CAS  PubMed  Google Scholar 

  • Perez-Mendoza D, de la Cruz F (2009) Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics 10(1):71

    Google Scholar 

  • Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto UM, Pappas KM, Winans SC (2012) The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10:755–765

    Article  CAS  PubMed  Google Scholar 

  • Silva RF, Mendonca SCM, Carvalho LM, Reis AM, Gordo I, Trindade S, Dionisio F (2011) Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet 7:e1002181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EPC, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74(3):434–452

    Google Scholar 

  • Smith J (2001) The social evolution of bacterial pathogenesis. Proc R Soc B 268:61–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart FM, Levin BR (1977) Population biology of bacterial plasmids—a priori conditions for existence of conjugationally transmitted factors. Genetics 87:209–228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Summers DK (1994) The origins and consequences of genetic instability in prokaryotes. Dev Biol Stand 83:7–11

    CAS  PubMed  Google Scholar 

  • Summers DK, Sherratt DJ (1984) Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Summers DK, Beton CW, Withers HL (1993) Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Turner PE, Cooper VS, Lenski RE (1998) Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 52:315–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Dionisio .

Editor information

Editors and Affiliations

Glossary

Antisense RNA

Regulatory RNA molecule complementary to the target RNA (Nordström et al. 1996)

Chemostat

Bioreactor with continuous influx of fresh culture medium and efflux of culture, at a constant rate

Symbiosis (commensalism and mutualism)

A prolonged relationship between organisms (mutualism if both parts have a benefit or commensalism if the benefit is unilateral)

Conjugation (bacterial conjugation)

Transfer mechanism of plasmids (and conjugative transposons) requiring contact between donor and recipient cells (Pinto et al. 2012)

Copy-number

See Plasmid copy-number

Epistasis

Interaction between genes (Phillips 2008)

Excludability

A good is excludable if it is possible to prevent non-contributing individuals from having access to it. Cable TV is excludable, but public TV broadcasts is non-excludable. A metabolite used only by the producer cell (probably inside the cell) is excludable; a metabolite that has its function outside cells are non-excludable (Dionisio and Gordo 2006)

Partition system

System regulating the distribution of plasmids between two daughter cells (Pinto et al. 2012)

Plasmid copy-number

Average number of copies of a plasmid per cell (Pinto et al. 2012)

Policing mechanism

A mechanism that regulates a certain behavior to prevent individual deviations or selfish behavior (Frank 1995)

Prokaryote

Organism without a defined cellular nucleus. Both bacteria and archaea are prokaryotes

Proteobacteria

A group (phylum) of gram-negative bacteria

Public good

A resource available to all interacting individuals (Dionisio and Gordo 2006)

Rivalry

Competition for an exhaustible resource: consumption or use by one individual does not reduce the amount available for others (Dionisio and Gordo 2006)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dionisio, F., Gama, J.A., Carvalho, A.F.P. (2015). Symbiosis Between Non-Transferable Plasmids and Prokaryotic Cells. In: Gontier, N. (eds) Reticulate Evolution. Interdisciplinary Evolution Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-16345-1_7

Download citation

Publish with us

Policies and ethics