Some Results on Difference Balanced Functions

  • Alexander Pott
  • Qi WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9061)


For a difference balanced function \(f\) from \({\mathbb F}_{q^n}^*\) to \({\mathbb F}_q\), the set \(D := \{ (x, f(x)) : x \in {\mathbb F}_{q^n}^* \}\) is a generalized difference set with respect to two exceptional subgroups \(({\mathbb F}_{q^n}^*, \cdot )\) and \(({\mathbb F}_q, +)\). This allows us to prove the balance property of difference balanced functions from \({\mathbb F}_{q^n}^*\) to \({\mathbb F}_q\) where \(q\) is a prime power. We further prove two necessary and sufficient conditions for \(d\)-homogeneous difference balanced functions. This unifies several combinatorial objects related to difference balanced functions.


Difference balanced function \(d\)-homogeneous function Generalized difference set \(p\)-ary sequence with ideal autocorrelation Two-tuple balanced function 


  1. 1.
    No, J.S.: New cyclic difference sets with Singer parameters constructed from \(d\)-homogeneous functions. Des. Codes Cryptogr. 33(3), 199–213 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Helleseth, T., Kumar, P.V., Martinsen, H.: A new family of ternary sequences with ideal two-level autocorrelation function. Des. Codes Cryptogr. 23(2), 157–166 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Helleseth, T., Gong, G.: New nonbinary sequences with ideal two-level autocorrelation. IEEE Trans. Inform. Theory 48(11), 2868–2872 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lin, H.A.: From cyclic Hadamard difference sets to perfectly balanced sequences. Ph.D. thesis, University of Southern California (1998)Google Scholar
  5. 5.
    Arasu, K., Dillon, J., Player, K.: Character sum factorizations yield perfect sequences. Preprint (2010)Google Scholar
  6. 6.
    Hu, H., Shao, S., Gong, G., Helleseth, T.: The proof of Lin’s conjecture via the decimation-hadamard transform (2013). arXiv preprint arXiv:1307.0885
  7. 7.
    Gordon, B., Mills, W.H., Welch, L.R.: Some new difference sets. Canad. J. Math. 14, 614–625 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chandler, D.B., Xiang, Q.: Cyclic relative difference sets and their \(p\)-ranks. Des. Codes Cryptogr. 30(3), 325–343 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chandler, D.B., Xiang, Q.: The invariant factors of some cyclic difference sets. J. Combin. Theory Ser. A 101(1), 131–146 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    No, J.S., Shin, D.J., Helleseth, T.: On the \(p\)-ranks and characteristic polynomials of cyclic difference sets. Des. Codes Cryptogr. 33(1), 23–37 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kim, S.H., No, J.S., Chung, H., Helleseth, T.: New cyclic relative difference sets constructed from \(d\)-homogeneous functions with difference-balanced property. IEEE Trans. Inform. Theory 51(3), 1155–1163 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  13. 13.
    Gong, G., Song, H.Y.: Two-tuple balance of non-binary sequences with ideal two-level autocorrelation. Discrete Appl. Math. 154(18), 2590–2598 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Pott, A., Wang, Q., Zhou, Y.: Sequences and functions derived from projective planes and their difference sets. In: Özbudak, F., Rodríguez-Henríquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 64–80. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Encyclopedia of Mathematics and its Applications, vol. 78, 2nd edn. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  16. 16.
    Lander, E.S.: Symmetric Designs: An Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983) CrossRefzbMATHGoogle Scholar
  17. 17.
    Pott, A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, vol. 1601. Springer, Heidelberg (1995) zbMATHGoogle Scholar
  18. 18.
    Schmidt, B.: Characters and Cyclotomic Fields in Finite Geometry. Lecture Notes in Mathematics, vol. 1797. Springer, Heidelberg (2002) CrossRefzbMATHGoogle Scholar
  19. 19.
    Ganley, M.J.: Direct product difference sets. J. Comb. Theory Ser. A 23(3), 321–332 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ludkovski, M., Gong, G.: Ternary ideal 2-level autocorrelation sequences. CORR 2000–59, Techinical report of CACR, University of Waterloo (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics, Institute of Algebra and GeometryOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Department of Electrical and Electronic EngineeringSouth University of Science and Technology of ChinaNanshan ShenzhenChina

Personalised recommendations