Finding Optimal Chudnovsky-Chudnovsky Multiplication Algorithms

  • Matthieu RambaudEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9061)


The Chudnovsky-Chudnovsky method provides today’s best known upper bounds on the bilinear complexity of multiplication in large extension of finite fields. It is grounded on interpolation on algebraic curves: we give a theoretical lower threshold for the smallest bounds that one can expect from this method (with exceptions). This threshold appears often reachable: we moreover provide an explicit method for this purpose.

We also provide new bounds for the multiplication in small- algebras over \(\mathbf {F}_2\). Building on these ingredients, we:
  • explain how far elliptic curves can provide upper bounds for the multiplication over \(\mathbf {F}_2\);

  • using these curves, improve the bounds for the multiplication in the NIST-size extensions of \(\mathbf {F}_2\);

  • thus, turning to curves of higher genus, further improve these bounds with the well known family of classical modular curves.

Although illustrated only over \(\mathbf {F}_2\), the techniques introduced apply to all characteristics.


Elliptic modular curves Finite field arithmetic Chudnovsky-Chudnovsky interpolation Tensor rank Optimal algorithms 


  1. 1.
    Bernardi, A., Brachat, J., Comon, P., Mourrain, B.: General tensor decomposition, moment matrices and applications. J. Symbolic Comput. 52, 51–71 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chudnovsky, D., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Randriambololona, H.: Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method. J. Complex. 28, 489–517 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Montgomery, P.L.: Five, six and seven-term Karatsuba-like formulae. IEEE Trans. Comput. 54, 362–370 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barbulescu, R., Detrey, J., Estibals, N., Zimmermann, P.: Finding optimal formulae for bilinear maps. In: Özbudak, F., Rodríguez-Henríquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 168–186. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Cenk, M., Özbudak, F.: Improved polynomial multiplication formulas over \(\mathbf{F}_2\) using CRT. IEEE Trans. Comput.- Brief Contributions 58, 572–577 (2009)CrossRefGoogle Scholar
  7. 7.
    Oceledets, I.: Optimal Karatsuba-like formulae for certain bilinear forms in GF(2). Linear Algebra Appl. 429, 2052–2066 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cenk, M., Özbudak, F.: Multiplication of polynomials modulo \(x^n\). Theoret. Comput. Sci. 412, 3451–3462 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Albrecht, M.: The M4rie library for dense linear algebra over small fields with even characteristic. Arxiv 1111.6900 (2011)
  10. 10.
    Pieltant, J., Randriambololona, H.: New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields (2013)Google Scholar
  11. 11.
    Shokrollahi, M.A.: Counting prime divisors on elliptic curves and multiplication in finite fields. In: Joyner, D. (ed.) Coding theory and Cryptography, pp. 180–201. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  13. 13.
    Ballet, S., Bonnecaze, A., Tukumuli, M.: On the construction of Chudnovsky-type algorithms for multiplication in large extensions of finite fields (2013)Google Scholar
  14. 14.
    NIST: FIPS 186–4 (2013)Google Scholar
  15. 15.
    Diamond, F., Shurman, J.: A First Course in Modular Forms. Springer, New York (2004)Google Scholar
  16. 16.
    Moreno, C.J.: Algebraic Curves on Finite Fields. Cambridge University Press, Cambridge (1993)Google Scholar
  17. 17.
    Stein, W., et al.: Sage mathematics software (Version 6.3). The Sage development team (2014).
  18. 18.
    Stein, W.: Modular Forms, a Computational Approach. AMS, Providence (2006)Google Scholar
  19. 19.
    Galbraith, S.D.: Equations For Modular Curves. Ph.D. Thesis, Oxford (1996)Google Scholar
  20. 20.
    Yang, Y.: Defining equations of modular curves. Adv. Math. 204, 481–508 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. i. the user language. J. Symbolic Comput. 24, 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Télécom ParisTechParisFrance

Personalised recommendations