Skip to main content

Glatiramoids

  • Chapter
  • First Online:
Non-Biological Complex Drugs

Abstract

Glatiramoids are non-biologic complex drugs (NBCDs) comprising four naturally occurring amino acids in a complex copolymeric mixture. The first and most thoroughly studied glatiramoid, glatiramer acetate (Copaxone®, Teva Pharmaceutical Industries, Ltd.) is approved for treatment of relapsing-remitting forms of multiple sclerosis, an autoimmune disorder characterized by neuroinflammation and progressive neurodegeneration. Glatiramoid mixtures comprise a potentially incalculable number of structurally closely related active peptide moieties that cannot be isolated, quantified, or identified using even the most sophisticated available multidimensional separation techniques. Numerous studies have demonstrated that the glatiramer acetate in Copaxone® modulates innate and adaptive immune cell responses to promote antiinflammatory and neuroprotective activities; however, the active epitopes in Copaxone® are unknown and the precise mechanisms of immunomodulatory activity responsible for its therapeutic efficacy are not entirely elucidated. The identity, quality, and consistency of a glatiramoid are inexorably linked to its own manufacturing process. Several manufacturers now market glatiramoids in various countries that are purported to be generic or follow-on versions of Copaxone®; at this writing, no full set of peer-reviewed long term safety and efficacy data for these products is available in the medical literature. Sophisticated analysis techniques, though unable to completely characterize glatiramoid mixtures can differentiate among them based on physicochemical features and biological activities. Comparative gene expression studies have demonstrated important differences between the reference drug (Copaxone®) and purported generic glatiramer acetate products that may have significant implications for the safety and efficacy of the purported generic products. Currently, there is no globally agreed defined pathway for regulatory approval of follow-on and generic glatiramoid products. In the interest of patient safety and well-being, there is an urgent need for regulatory agencies to come to consensus regarding criteria needed to establish therapeutic equivalence among members of the glatiramoid class. Scientific approaches discussed in this chapter may be helpful when evaluating glatiramoid formulations in the framework of equivalence testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acids

ACTRIMS:

Americas committee for treatment and research in multiple sclerosis

AFM:

Atomic force microscopy

ALA:

L-alanine

APC:

Antigen-presenting cells

APL:

Altered peptide ligand

APP:

Amyloid precursor protein

ARR:

Annual relapse rate

BBB:

Blood Brain Barrier

BDNF:

Brain-derived neurotrophic factor

CCR7:

Chemokine receptor type 7

CDMS:

Clinically definitive multiple sclerosis

CNS:

Central nervous system

Co-stim:

Costimulatory

DLS:

Dynamic light scattering

EAE:

Experimental autoimmune encephalomyelitis

ECTRIMS:

European committee for treatment and research in multiple sclerosis

GA:

Glatiramer acetate

GdE:

Gadolinium-enhancing

GLU:

L-glutamic acid

HLA:

Human leukocyte antigen

IEF:

Isoelectric focusing

IL:

Interleukin

IMMS:

Ion mobility mass spectrometry

IFN-γ:

Interferon gamma

LYS:

L-lysine

MBP:

Myelin basic protein

MHC:

Major histocompatibility complex

MOG:

Myelin oligodendrocyte glycoprotein

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MS:

Multiple sclerosis

MW:

Molecular weight

NBCD:

Non-biological complex drug

NK:

Natural killer

PBMC:

Peripheral blood mononuclear cells

PD:

Pharmacodynamic

PD1:

Programmed death receptor 1

PFS:

Pre-filled syringe

PK:

Pharmacokinetic

PLP:

Proteolipid protein

RP-HPLC:

High-performance liquid chromatography

RRMS:

Relapsing-remitting multiple sclerosis

SC:

Subcutaneous

SEC:

Size exclusion chromatography

TCR:

T cell receptor

TGF-β:

Transforming growth factor beta

TIV:

Total intensity value

TNBS:

2,4,6-trinitrobenzenesulfonic acid

TNF-α:

Tumor necrosis factor alpha

TYR:

L-tyrosine

UV:

Ultraviolet

WFI:

Water for injection

YFP:

Yellow fluorescent protein

References

  • Aharoni R, Teitelbaum D, Arnon R (1993) T suppressor hybridomas and interleukin-2-dependent lines induced by copolymer 1 or by spinal cord homogenate down-regulate experimental allergic encephalomyelitis. Eur J Immunol 23:17–25

    CAS  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Sela M et al (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Arnon R et al (1999) Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 96:634–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Leitner O et al (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A 97:11472–11477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Kayhan B, Eilam R et al (2003) Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 100:14157–14162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Arnon R, Eilam R (2005a) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25:8217–8228

    CAS  PubMed  Google Scholar 

  • Aharoni R, Eilam R, Domev H, et al (2005b) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102:19045–19050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Kayhan B, Arnon R (2005c) Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm Bowel Dis 11:106–115

    PubMed  Google Scholar 

  • Aharoni R, Herschkovitz A, Eilam R et al (2008) Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:11358–11363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Eilam R, Stock A et al (2010) Glatiramer acetate reduces Th-17 inflammation and induces regulatory T-cells in the CNS of mice with relapsing-remitting or chronic EAE. J Neuroimmunol 225:100–111

    CAS  PubMed  Google Scholar 

  • Aharoni R, Vainshtein A, Stock A et al (2011) Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune encephalomyelitis and the neuroprotective effect of glatiramer acetate. J Autoimmun 37:228–241

    CAS  PubMed  Google Scholar 

  • Allie R, Hu L, Mullen KM et al (2005) Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 62:889–894

    PubMed  Google Scholar 

  • Arnold D, Narayanan S et al (2013) Neuroprotection with glatiramer acetate: evidence from the PreCISe trial. J Neurol 260(7):1901–1906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 101(Suppl 2):14593–14598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnon R, Aharoni R (2007) Neurogenesis and neuroprotection in the CNS-fundamental elements in the effect of glatiramer acetate on treatment of autoimmune neurological disorders. Mol Neurobiol 36:245–253

    CAS  PubMed  Google Scholar 

  • Azoulay D, Vachapova V, Shihman B et al (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218

    CAS  PubMed  Google Scholar 

  • Bakshi S, Chalifa-Caspi V, Olaschkes I et al (2013) Gene expression analysis reveals function pathways of glatiramer acetate activation. Expert Opin Ther Targets 17(4):351–362

    CAS  PubMed  Google Scholar 

  • Bar-Or A, Nuttall R, Duddy M et al (2003) Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126(Pt 12):2738–2749

    PubMed  Google Scholar 

  • Basile E, Gibbs E, Aziz T et al (2006) During 3 years treatment of primary progressive multiple sclerosis with glatiramer acetate, specific antibodies switch from IgG1 to IgG4. J Neuroimmunol 177(1–2)161–166

    CAS  PubMed  Google Scholar 

  • Baxter AG, Smyth MJ (2002) The role of NK cells in autoimmune disease. Autoimmunity 35:1–14

    CAS  PubMed  Google Scholar 

  • Benczur M, Petranyl GG, Palffy G et al (1980) Dysfunction of natural killer cells in multiple sclerosis: a possible pathogenetic factor. Clin Exp Immunol 39:657–662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beppu L, Anilkumar AA, Dohil R et al (2013) MMP-14 is elevated in pediatric subjects with eosinophilic esophagitis. J Allergy Clin Immunol 131(2):Abstract 132

    Google Scholar 

  • Berkowitz S, Engen J, Mazzeo J et al (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11(7):527–540. doi:10.1038/nrd37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettelli E, Baeten D, Jager A et al (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    CAS  PubMed  Google Scholar 

  • Brenner T, Arnon R, Sela M et al (2001) Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 115:152–160

    CAS  PubMed  Google Scholar 

  • Burger D, Molnarfi N, Weber MS et al (2009) Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. Proc Natl Acad Sci U S A 106:4355–4359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carter NJ, Keating GM (2010) Glatiramer acetate: a review of its use in relapsing-remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. Drugs 70(12):1545–1577

    CAS  PubMed  Google Scholar 

  • Chang TT, Jabs C, Sobel RA et al (1999) Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med 190:733–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang TT, Sobel RA, Wei T et al (2003) Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. Eur J Immunol 33:2022–2032

    CAS  PubMed  Google Scholar 

  • Chen M, Gran B, Costello K et al (2001) Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 7:209–219

    CAS  PubMed  Google Scholar 

  • Cohen B, Oger J, Gagnon A et al (2008) The implications of immunogenicity for protein-based multiple sclerosis therapies. J Neurol Sci 275:7–17

    CAS  PubMed  Google Scholar 

  • Cohen JA et al (2014) Generic glatiramer acetate is equivalent to copaxone on effcacy and safety: results of the randomized double-blind GATE trial in multiple sclerosis, Abstract FC1.2, 2014 Joint ACTRIMS-ECTRIMS Meeting (MSBoston 2014): Oral Presentations. Mult Scler 20:14–66

    Google Scholar 

  • COPAXONE® (glatiramer acetate) solution for subcutaneous injection: Full Prescribing Information, FDA-approved labeling. Teva Neuroscience Inc. Initial U.S. Approval: 1996. Revised [2/2009]

    Google Scholar 

  • Crommelin DJ, de Vlieger JS, Weinstein V et al (2014) Different pharmaceutical products need similar terminology. AAPS J 16(1):11–14. doi:10.1208/s12248-013-9532-0

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Stefano N, Filippi M, Confavreux C et al (2009) The results of two multicentre, open-label studies assessing efficacy, tolerability and safety of protiramer, a high molecular weight synthetic copolymeric mixture, in patients with relapsing-remitting multiple sclerosis. Mult Scler 15(2):238–243

    PubMed  Google Scholar 

  • Dhib-Jalbut S (2003) Glatiramer acetate (Copaxone) therapy for multiple sclerosis. Pharmacol Ther 98(2):245–255

    CAS  PubMed  Google Scholar 

  • Duda PW, Schmied MC, Cook SL et al (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105:967–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duddy M, Niino M, Adatia F et al (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178:6092–6099

    CAS  PubMed  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicines under the microscope. Mol Pharm 8(6):2101–2141

    CAS  PubMed  Google Scholar 

  • Farina C, Vargas V, Heydari N et al (2002) Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J Neuroimmunol 123:188–192

    CAS  PubMed  Google Scholar 

  • Filippi M, Rovaris M, Rocca MA et al (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”. Neurology 57:731–733

    CAS  PubMed  Google Scholar 

  • Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950

    CAS  PubMed  Google Scholar 

  • Flodstrom M, Shi FD, Sarvetnick N, Ljunggren HG (2002) The natural killer cell—friend or foe in autoimmune disease? Scand J Immunol 55:432–441

    CAS  PubMed  Google Scholar 

  • Franciotta D, Zardini E, Bergamaschi R et al (2003) Interferon gamma and interleukin 4 producing T cells in peripheral blood of multiple sclerosis patients undergoing immunomodulatory treatment. J Neurol Neurosurg Psychiatry 74:123–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franciotta D, Salvetti M, Lolli F et al (2008) B cells and multiple sclerosis. Lancet Neurol 7:852–858

    CAS  PubMed  Google Scholar 

  • French AR, Yokoyama WM (2004) Natural killer cells and autoimmunity. Arthritis Res Ther 6:8–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fridkis-Hareli M, Strominger JL (1998) Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 160:4386–4397

    CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Panet H, Holdengreber V et al (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47:201–207

    CAS  PubMed  Google Scholar 

  • Grunebaum E, Malatzky-Goshen E, Shoenfeld Y (1989) Natural killer cells and autoimmunity. Immunol Res 8:292–304

    CAS  PubMed  Google Scholar 

  • Haas J, Hug A, Viehover A et al (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352

    CAS  PubMed  Google Scholar 

  • Haas J, Fritzsching B, Trubswetter P et al (2007) Prevalence of newly generated naïve regulatory T cells [Treg] is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol 179:1322–1330

    CAS  PubMed  Google Scholar 

  • Haas J, Korporal M, Balint B et al (2009) Glatiramer acetate improves regulatory T cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T cells in patients with multiple sclerosis. J Neuroimmunol 216:113–117

    CAS  PubMed  Google Scholar 

  • Hafler DA (2002) Degeneracy, as opposed to specificity, in immunotherapy. J Clin Invest 109:581–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammarberg H, Lidman O, Lundberg C et al (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    CAS  PubMed  Google Scholar 

  • Hedegaard CJ, Chen N, Sellebjerg F et al (2009) Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology 128:e451–e461

    PubMed Central  PubMed  Google Scholar 

  • Hjelmstrom P, Juedes AE, Fjell J et al (1998) B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol 161:4480–4483

    CAS  PubMed  Google Scholar 

  • Holloway C, Mueller-Berghaus J, Lima BS et al (2012) Scientific considerations for complex drugs in light of established and emerging regulatory guidance. Ann N Y Acad Sci 1276:26–36. doi:1111/j.1749-6632.2012.06811

    PubMed  Google Scholar 

  • Hong J, Li N, Zhang X et al (2005) Induction of CD4+CD25+regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 102:6449–6454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4(1):44–57

    CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    PubMed Central  Google Scholar 

  • Johnson KP (2010) Glatiramer acetate and the glatiramoid class of immunomodulator drugs in multiple sclerosis: an update. Expert Opin Drug Metab Toxicol 6(5):643–660. doi:10.1517/17425251003752715

    CAS  PubMed  Google Scholar 

  • Jung S, Siglienti I, Grauer O et al (2004) Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 148(1–2):63–73

    CAS  PubMed  Google Scholar 

  • Kala M, Rhodes SN, Piao WH et al (2010) B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 221:136–145

    CAS  PubMed  Google Scholar 

  • Kala M, Miravalle A, Vollmer T (2011) Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol 235:9–17

    CAS  PubMed  Google Scholar 

  • Kantengwa S, Weber MS, Juillard C et al (2007) Inhibition of naive Th1 CD4+ T cells by glatiramer acetate in multiple sclerosis. J Neuroimmunol 185:123–129

    CAS  PubMed  Google Scholar 

  • Karandikar NJ, Crawford MP, Yan X et al (2002) Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 109:641–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan O, Shen Y, Caon C et al (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651

    CAS  PubMed  Google Scholar 

  • Kim HJ, Ifergan I, Antel JP et al. (2004) Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172:7144–7153

    CAS  PubMed  Google Scholar 

  • Kipnis J, Schwartz M (2002) Dual action of glatiramer acetate (Cop-1) in the treatment of CNS autoimmune and neurodegenerative disorders. Trends Mol Med 8:319–323

    CAS  PubMed  Google Scholar 

  • Kipnis J, Yoles E, Porat Z et al (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kipnis J, Mizrahi T, Hauben E et al (2002) Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 99:15620–15625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kipnis J, Nevo U, Panikashvili D et al (2003) Therapeutic vaccination for closed head injury. J Neurotrauma 20:559–569

    PubMed  Google Scholar 

  • Lalive PH, Neuhaus O, Benkhoucha M et al (2011) Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25:401–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 225:2–8

    PubMed  Google Scholar 

  • Maier K, Kuhnert AV, Taheri N et al (2006) Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 169:1353–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mann MK, Maresz K, Shriver LP et al (2007) B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 178:3447–3456

    CAS  PubMed  Google Scholar 

  • Matsushita T, Yanaba K, Bouaziz JD et al (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118:3420–3430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller A, Shapiro S, Gershtein R et al (1998) Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 92:113–121

    CAS  PubMed  Google Scholar 

  • Moalem G, Gdalyahu A, Shani Y et al (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345

    CAS  PubMed  Google Scholar 

  • Muhallab S, Lundberg C, Gielen AW et al (2002) Differential expression of neurotrophic factors and inflammatory cytokines by myelin basic protein specific and other recruited T cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis. Scand J Immunol 55:264–273

    CAS  PubMed  Google Scholar 

  • Mühlebach S, Vulto A, de Vlieger J et al (2013) The authorization of non-biological complex drugs (NBCDs) follow-on versions: specific regulatory and interchangeability rules ahead? GaBi J 2(4):204–207

    Google Scholar 

  • Neuhaus O, Farina C, Yassouridis A et al (2000) Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 97:7452–7457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholas J (2012) Complex drugs and biologics: scientific and regulatory challenged for follow-on products. Drug Inf J 46(2):197–206

    Google Scholar 

  • Putheti P, Soderstrom M, Link H et al (2003) Effect of glatiramer acetate (Copaxone) on CD4+CD25high T regulatory cells and their IL-10 production in multiple sclerosis. J Neuroimmunol 144:125–131

    CAS  PubMed  Google Scholar 

  • Ramot Y, Rosenstock M, Klinger E et al (2012) Comparative long-term preclinical safety evaluation of two glatiramoid compounds (glatiramer acetate, Copaxone®, and TV-5010, protiramer) in rats and monkeys. Toxicol Pathol 40:40–54. doi:10.1177/019263311424169

    CAS  PubMed  Google Scholar 

  • Sand KL, Knudsen E, Rolin J et al (2009) Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell Mol Life Sci 66:1446–1456

    CAS  PubMed  Google Scholar 

  • Sanna A, Fois ML, Arru G et al (2006) Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immuno 143:357–362

    CAS  Google Scholar 

  • Saresella M, Marventano I, Longhi R et al (2008) CD4+CD25+FoxP3+PD1 regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy. FASEB J 22:3500–3508

    CAS  PubMed  Google Scholar 

  • Schellekens H, Klinger E, Mühlebach S et al (2011) The therapeutic equivalence of complex drugs. Regul Toxicol Pharmacol 59:176–183. doi:10.1016/yrtph.210.09.021

    CAS  PubMed  Google Scholar 

  • Schellekens H, Stegemann S, Weinstein V et al (2014) How to regulate nonbiological complex drugs (NBCD) and their follow-on versions: Points to consider. AAPS J 16(1):15–21. doi:10.1208/s12248-013-9533-z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schori H, Kipnis J, Yoles E et al (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 98:3398–3403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrempf W, Ziemssen T (2007) Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun Rev 6:469–475. doi:10.1016/j.autrev.2007.02.03

    CAS  PubMed  Google Scholar 

  • Schwartz M (2003) Neuroprotection as a treatment for glaucoma: pharmacological and immunological approaches. Eur J Ophthalmol 13(Suppl 3):S27–S31

    PubMed  Google Scholar 

  • Schwartz M, Kipnis J (2002) Autoimmunity on alert: naturally occurring regulatory CD4(+)CD25(+) T cells as part of the evolutionary compromise between a ‘need’ and a ‘risk’. Trends Immunol 23:530–534

    CAS  PubMed  Google Scholar 

  • Sela M, Teitelbaum D (2001) Glatiramer acetate in the treatment of multiple sclerosis. Expert Opin Pharmacother 2:1149–1165

    CAS  PubMed  Google Scholar 

  • Stern JN, Keskin DB, Zhang H et al (2008) Amino acid copolymer-specific IL-10 secreting regulatory T cells that ameliorate autoimmune diseases in mice. Proc Natl Acad Sci U S A 105:5172–5176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teitelbaum D, Meshorer A, Hirshfeld T et al (1971) Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1:242–48

    CAS  PubMed  Google Scholar 

  • Teitelbaum D, Aharoni R, Arnon R et al (1988) Specific inhibition of the T-cell response to myelin basic protein by the synthetic copolymer Cop 1. Proc Natl Acad Sci U S A 85:9724–9728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teitelbaum D, Brenner T, Abramsky O et al (2003) Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 9:592–599 B99

    CAS  PubMed  Google Scholar 

  • Tennakoon DK, Mehta RS, Ortega SB et al (2006) Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 176:7119–7129

    CAS  PubMed  Google Scholar 

  • Towfic F, Funt JM, Fowler KD et al (2014) Comparing the biological impact of glatiramer acetate with the biological impact of a generic. PLoS ONE 9(1):e83757. doi:1130.1371/journal.pone.0083757

    PubMed Central  PubMed  Google Scholar 

  • Ure DR, Rodriguez M (2002) Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 16:1260–1262 doi:10.1096/fj.01-1023fje: 1260-1262

    CAS  PubMed  Google Scholar 

  • Varkony H, Weinstein V, Klinger E et al (2009) The glatiramoid class of immunomodulator drugs. Expert Opin Pharmacother 10(4):657–68

    CAS  PubMed  Google Scholar 

  • Venken K, Hellings N, Broekmans T et al (2008) Natural naïve CD4+CD25+CD127 low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 180:6411–6420

    CAS  PubMed  Google Scholar 

  • Vieira PL, Heystek HC, Wormmeester J et al (2003) Glatiramer acetate (copolymer-1, Copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 170:4483–4488

    CAS  PubMed  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL et al (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber MS, Hohlfeld R, Zamvil SS (2007a) Mechanism of action of glatiramer acetate in treatment of multiple sclerosis. Neurotherapeutics 4:647–653

    CAS  PubMed  Google Scholar 

  • Weber MS, Prod'homme T, Youssef S et al (2007b) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943

    CAS  PubMed  Google Scholar 

  • Weder C, Baltariu GM, Wyler KA et al (2005) Clinical and immune responses correlate in glatiramer acetate therapy of multiple sclerosis. Eur J Neurol 12:869–878

    CAS  PubMed  Google Scholar 

  • Wolf SD, Dittel BN, Hardardottir F et al (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271–2278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolinsky JS (2004) Glatiramer acetate for the treatment of multiple sclerosis. Expert Opin Pharmacother 5:875–891

    CAS  PubMed  Google Scholar 

  • Yanaba K, Bouaziz JD, Haas KM et al (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–650

    CAS  PubMed  Google Scholar 

  • Zeskind B et al (2014, April 28) Gene expression studies comparing glatiramer acetate and proposed generics (P1.212). AAN Annual Meeting. http://www.neurology.org/content/82/10_Supplement/P1.212. Accessed 28 April 2015

  • Zhang B, Yamamura T, kKondo T et al (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Hovell CJ, Pawley S et al (2004) Expression of matrix metalloproteinase-2 and -14 persists during early resolution of experimental liver fibrosis and might contribute to fibrolysis. Liver Int 24:492–501

    CAS  PubMed  Google Scholar 

  • Ziemssen T, Schrempf W (2007) Glatiramer acetate: mechanisms of action in multiple sclerosis. Int Rev Neurobiol 79:537–570

    CAS  PubMed  Google Scholar 

  • Ziemssen T, Kumpfel T, Klinkert WE et al (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125:2381–2391

    PubMed  Google Scholar 

  • Ziemssen T, Kumpfel T, Schneider H et al (2005) Secretion of brain-derived neurotrophic factor by glatiramer acetate-reactive T-helper cell lines: Implications for multiple sclerosis therapy. J Neurol Sci 233:109–112

    CAS  PubMed  Google Scholar 

Regulatory References

Media References

Download references

Acknowledgement

The authors sincerely wish to thank the following persons for their advice and contribution to this book chapter and especially the help of those at CMC and R&D departments of Teva Pharmaceuticals: Arthur Komlosh, Tal Hasson, Tatiana Molotsky, Anna Kogan, Revital Krispin, Dalia Pinkert, Galia Papir, Kevin Wells-Knecht, Mehran Yazdanian, Jill Conner, Shlomo Bakshi, Olga Beriozkin and Wim Weyenberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Weinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weinstein, V., Schwartz, R., Grossman, I., Zeskind, B., Nicholas, J. (2015). Glatiramoids. In: Crommelin, D., de Vlieger, J. (eds) Non-Biological Complex Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-16241-6_4

Download citation

Publish with us

Policies and ethics