Skip to main content

The Use of Embryonic Stem Cells and Induced Pluripotent Stem Cells to Model Pulmonary Arterial Hypertension

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Abstract

Elucidating alterations in gene expression and cell signaling is essential for understanding the molecular basis for pulmonary arterial hypertension (PAH). Transcriptomic differences, which affect cell function, increase the risk for development of PAH. The use of animal models of disease and studies of end stage PAH tissue samples has significantly furthered the progress in human PAH research over the last century; however, both experimental sources have major limitations including end stage disease and limited translation to human patients. The ongoing challenge is to translate these findings into patient therapies. The ability to validate transformative therapies will require human tissue and cells, a limited resource under the best of circumstances. This need to study disease in multiple cell and tissue types has fostered significant interest in the use of modified embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to model lung disease. These cells provide an alternative for studying the initiation and genetic basis of disease processes in both heritable and idiopathic PAH. In this Chapter, we will focus on the use of murine ESCs and murine and patient-derived iPSCs in pulmonary vascular disease research as a model for PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMPR2:

Bone morphogenic protein (receptor 2)

COPD:

Chronic obstructive pulmonary disease

EC:

Endothelial cell

ESC:

Embryonic stem cells

EUCOMM:

European conditional mouse mutagenesis program

FLK-1/KDR:

Fetal liver kinase-1/Kinase insert domain receptor

HPAH:

Hereditary pulmonary arterial hypertension

IPAH:

Idiopathic pulmonary arterial hypertension

iPSC:

Induced pluripotent stem cells

KOMP-ES:

Knockout mouse project-embryonic stem cell repository

L-EPC:

Late outgrowth endothelial progenitor cell

MPSVII:

Mucopolysaccharidosis

MSC:

Mesenchymal stromal cell

NIH:

National Institute of Health

PAH:

Pulmonary arterial hypertension

PF:

Pulmonary fibrosis

PRDC:

Protein related to DAN and cerberus

RV:

Right ventricular

SCNT:

Somatic cell nuclear transfer

VEGF:

Vascular endothelial growth factor

References

  • Adams WJ, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, Aird WC, Mayadas TN, Luscinskas FW, García-Cardeña G (2013) Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Rep 1(2):105–113, http://dx.doi.org/10.1016/j.stemcr.2013.06.007

    Article  CAS  Google Scholar 

  • Alfaro MP, Vincent A, Saraswati S, Thorne CA, Hong CC, Lee E, Young PP (2010) sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 285(46):35645–35653. doi:10.1074/jbc.M110.135335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105(14):1672–1678

    Article  CAS  PubMed  Google Scholar 

  • Austin ED, Loyd JE (2014) The genetics of pulmonary arterial hypertension. Circ Res 115(1):189–202

    Article  CAS  PubMed  Google Scholar 

  • Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S55–S66. doi:10.1016/j.jacc.2009.04.011, pii: S0735-1097(09)01214-5

    Article  PubMed  Google Scholar 

  • Bilousova G, Hyun Jun D, King KB, DeLanghe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM (2010) Osteoblasts derived from induced pluripotent stem cells form calcified structures in Scaffolds both in vitro and in vitro. Stem Cells 29:206–216. doi:10.1002/stem.566

    Article  Google Scholar 

  • Choi KKM, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    CAS  PubMed  Google Scholar 

  • Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I (2009) Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27(3):559–567. doi:10.1634/stemcells.2008-0922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chow K, Fessel JP, Kaori Ihida-Stansbury, Schmidt EP, Gaskill C, Alvarez D, Graham B, Harrison DG, Wagner DH Jr, Nozik-Grayck E, West JD, Klemm DJ, Majka SM (2013) Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ 3(1):31–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Jesus Perez VA, Ali Z, Alastalo T-P, Ikeno F, Sawada H, Lai Y-J, Kleisli T, Spiekerkoetter E, Qu X, Rubinos LH, Ashley E, Amieva M, Dedhar S, Rabinovitch M (2011) BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways. J Cell Biol 192(1):171–188. doi:10.1083/jcb.201008060

    Article  PubMed Central  Google Scholar 

  • Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351(16):1655–1665. doi:10.1056/NEJMra035488, pii: 351/16/1655

    Article  CAS  PubMed  Google Scholar 

  • Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM—the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6(3):180–185

    Article  CAS  PubMed  Google Scholar 

  • Frump AL, Lowery JW, Hamid R, Austin ED, de Caestecker M (2013) Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension. PLoS One 8(11):e80319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geti I, Ormiston ML, Rouhani F, Toshner M, Movassagh M, Nichols J, Mansfield W, Southwood M, Bradley A, Rana AA, Vallier L, Morrell NW (2012) A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells. Stem Cells Transl Med 1(12):855–865. doi:10.5966/sctm.2012-0093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, Ventura C, Rubin LJ (2009) Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S108–S117. doi:10.1016/j.jacc.2009.04.014, pii: S0735-1097(09)01219-4

    Article  PubMed  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPSC cells generated from autologous skin. Science 318(5858):1920–1923. doi:10.1126/science.1152092

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Daleo MA, Murphy CK, Yu PB, Ho JN, Hu J, Peterson RT, Hatzopoulos AK, Hong CC (2008) Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 3(8):e2904. doi:10.1371/journal.pone.0002904

    Article  PubMed Central  PubMed  Google Scholar 

  • Hemnes AR, Brittain EL, Trammell AW, Fessel JP, Austin ED, Penner N, Maynard KB, Gleaves L, Talati M, Absi T, DiSalvo T, West J (2013) Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med 189(3):325–334. doi:10.1164/rccm.201306-1086OC

    Article  Google Scholar 

  • Ikonomou L, Hemnes AR, Bilousova G, Hamid R, Loyd JE, Hatzopoulos AK, Kotton DN, Majka SM, Austin ED (2011) Programmatic change: lung disease research in the era of induced pluripotency. Am J Physiol Lung Cell Mol Physiol 301(6):L830–L835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson JA, Hemnes AR, Perrien DS, Schuster M, Robinson LJ, Gladson S, Loibner H, Bai S, Blackwell TR, Tada Y, Harral JW, Talati M, Lane KB, Fagan KA, West J (2012) Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 302(5):L474–L484. doi:10.1152/ajplung.00202.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent Flk-1(+) cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11(5):723–732. doi:10.1016/j.devcel.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  • Laumanns IP, Fink L, Wilhelm J, Wolff J-C, Mitnacht-Kraus R, Graef-Hoechst S, Stein MM, Bohle RM, Klepetko W, Hoda MAR, Schermuly RT, Grimminger F, Seeger W, Voswinckel R (2009) The noncanonical WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 40(6):683–691. doi:10.1165/rcmb.2008-0153OC

    Article  CAS  PubMed  Google Scholar 

  • Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck H-W, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majka S, Hagen M, Blackwell T, Harral J, Johnson J, Gendron R, Paradis H, Crona D, Loyd J, Nozik-Grayck E, Stenmark K, West J (2011) Physiologic and molecular consequences of endothelial Bmpr2 mutation. Respir Res 12(1):84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGoon MD, Benza RL, Escribano-Subias P, Jiang X, Miller DP, Peacock AJ, Pepke-Zaba J, Pulido T, Rich S, Rosenkranz S, Suissa S, Humbert M (2013) Pulmonary arterial hypertension epidemiology and registries. J Am Coll Cardiol 62(25 Suppl):D51–D59. doi:10.1016/j.jacc.2013.10.023

    Article  PubMed  Google Scholar 

  • Meng X-L, Shen J-S, Kawagoe S, Ohashi T, Brady RO, Eto Y (2010) Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proc Natl Acad Sci 107(17):7886–7891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409. doi:10.1056/NEJMoa0908679

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Laugwitz K-L, Dorn T, Sinnecker D, Mummery C (2013) Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 3(11)

    Google Scholar 

  • Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S20–S31. doi:10.1016/j.jacc.2009.04.018, pii: S0735-1097(09)01226-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Lau FH, Musunuru K, Cowan C, Rajagopal J (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10(4):385–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506. doi:10.1161/circulationaha.108.769562

    Article  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  • Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM, Tuder RM (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):25S–32S

    Article  PubMed  Google Scholar 

  • Roberts KE, McElroy JJ, Wong WP, Yen E, Widlitz A, Barst RJ, Knowles JA, Morse JH (2004) BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 24(3):371–374

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE, McElroy JJ, Juskiw NK, Mallory NC, Rich S, Diamond B, Barst RJ (2008) Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant 27(6):668–674. doi:10.1016/j.healun.2008.02.009, pii: S1053-2498(08)00178-2

    Article  PubMed  Google Scholar 

  • Runo JR, Loyd JE (2003) Primary pulmonary hypertension. Lancet 361(9368):1533–1544

    Article  PubMed  Google Scholar 

  • Ryder E, Gleeson D, Sethi D, Vyas S, Miklejewska E, Dalvi P, Habib B, Cook R, Hardy M, Jhaveri K, Bottomley J, Wardle-Jones H, Bussell J, Houghton R, Salisbury J, Skarnes W, Ramirez-Solis R (2013) Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm Genome 24(7–8):286–294. doi:10.1007/s00335-013-9467-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheng CC, Charles CH (2013) Pluripotent Stem Cells to Model Human Cardiac Diseases, Pluripotent Stem Cells, Dr. Deepa Bhartiya (Ed.), ISBN: 978-953-51-1192-4, InTech, DOI: 10.5772/54373. Available from: http://www.intechopen.com/books/pluripotent-stem-cells/pluripotent-stem-cells-to-modelhuman-cardiac-diseases

  • Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–D41. doi:10.1016/j.jacc.2013.10.029

    Article  PubMed  Google Scholar 

  • Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342. doi:10.1038/nature10163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis RA, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN (2010) Generation of transgene-free lung disease-specific human iPSC cells using a single excisable lentiviral stem cell cassette. Stem Cells 28(10):1728–1740. doi:10.1002/stem.495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27(3):543–549. doi:10.1634/stemcells.2008-1075, pii: stemcells.2008-1075

    Article  CAS  PubMed  Google Scholar 

  • Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPSC cells generated with a single excisable vector. Stem Cells 28(1):64–74. doi:10.1002/stem.255

    CAS  PubMed  Google Scholar 

  • Sztrymf BCF, Girerd B, Yaici A, Jais X, Sitbon O, Montani D, Souza R, Simonneau G, Soubrier F, Humbert M (2008) Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med 177:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • van Wijk B, Moorman AF, van den Hoff MJ (2007) Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res 74(2):244–255. doi:10.1016/j.cardiores.2006.11.022, pii: S0008-6363(06)00510-4

    Article  PubMed  Google Scholar 

  • West JTY, Fagan KA, Steudel W, Fouty BW, Harral JW, Miller M, Ozimek J, Tuder RM, Rodman DM (2005) Suppression of type II bone morphogenic protein receptor in vascular smooth muscle induces pulmonary arterial hypertension in transgenic mice. Chest 128:553S

    Article  PubMed  Google Scholar 

  • West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean J-C, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin DC, Ware LB, Wheeler LA, Hong CC, Meyrick BO, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM (2014) Identification of a common Wnt associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(5):C415–C430

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hamilton B, Martin C, Gao Y, Ye M, Yao S (2009) Generation of induced pluripotent stem cells by reprogramming human fibroblasts with the stemgent human TF lentivirus set. J Vis Exp (34). pii: 1553. doi:10.3791/1553

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363(1500):2079–2087. doi:10.1098/rstb.2008.2261, pii: 81R627X1V0591680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamanaka S (2009a) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52. doi:10.1038/nature08180

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2009b) A fresh look at iPSC cells. Cell 137(1):13–17. doi:10.1016/j.cell.2009.03.034, pii: S0092-8674(09)00333-X

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528. doi:10.1038/nature06894, pii: nature06894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants to S.M. Majka from the NIH NHLBI R01HL091105 and R01HL11659701. We would like to extend our gratitude to Dr. Darrell Kotton for the creation of the first BMPR2 mutant iPSC lines submitted to the Vanderbilt University repository (BMP3a and BMP1a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Majka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hemnes, A.R., Austin, E.D., Majka, S. (2015). The Use of Embryonic Stem Cells and Induced Pluripotent Stem Cells to Model Pulmonary Arterial Hypertension. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_18

Download citation

Publish with us

Policies and ethics