Skip to main content

Pulmonary Vascular Remodeling by Resident Lung Stem and Progenitor Cells

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Tissue-resident stem and progenitor cells are important regulators of tissue homeostasis, repair or regeneration as well as remodeling. While resident vascular stem and progenitor cells have been less well-defined than their epithelial counterparts, these cells may be categorized by their anatomic localization within the pulmonary vascular tree. However, the exact niche of such cells is unclear in the lung and these cells are further obscured by a lack of specific markers that can be used in lineage tracing analyses. The lack of a clear definition of vascular stem and progenitor cells has impeded the development of therapeutic strategies aimed at stimulating these cell populations to promote repair and reversing their contribution to remodeling during disease. Here we focus on describing the sources of stem and precursor cells within the pulmonary vascular tree in the context of their potential roles in vascular remodeling and pathogenic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2:

ATP-binding cassette sub-family G member 2

BAL:

Bronchiolar lavage

BM-MSC:

Bone marrow-derived mesenchymal stem cells

BMP4:

Bone morphogenic protein 4

BPD:

Bronchopulmonary dysplasia

CD31:

Cluster of differentiation molecule 31, also known as PECAM

CD45:

Cluster of differentiation molecule 45, also known as leukocyte common antigen

COPD:

Chronic obstructive lung disease

CVC:

Calcifying vascular cells

EC:

Endothelial cell

EndMT:

Endothelial-mesenchymal transition

EPC:

Endothelial progenitor cells

Fb:

Fibroblast

FGF (R):

Fibroblast growth factor (receptor)

FLK1:

Fetal liver kinase 1, also known as CD309, KDR, and VEGFR2

FOXF1:

Forkhead box protein F1

GFP:

Green fluorescent protein

hESC:

Human embryonic stem cell

HOXB5/N5:

Homeobox protein Hox-B5/N5

ILD:

Interstitial lung diseases

IPF:

Idiopathic pulmonary fibrosis

LAM:

Lymphangioleiomyomatosis

MEF2D:

Myocyte-specific enhancer factor 2D

MSC:

Mesenchymal stem cell

MyoFb:

Myofibroblast

PAH:

Pulmonary arterial hypertension

PDGF (R):

Platelet-derived growth factor (receptor)

PH:

Pulmonary hypertension

RGS5:

Regulator of G-protein signaling 5

Shh:

Sonic hedgehog

SMC:

Smooth muscle cell

TGFβ:

Transforming growth factor beta

Thy1:

Thymocyte antigen 1, also known as CD90

VAFs:

Vascular adventitial fibroblasts

VeCad:

Vascular endothelial cadherin

VSMC:

Vascular smooth muscle cell

WT1:

Wilms’ tumor protein

References

  • Alagappan VT, Boer W, Misra V, Mooi W, Sharma H (2013) Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys 67(2):219–234. doi:10.1007/s12013-013-9713-6

    Article  CAS  PubMed  Google Scholar 

  • Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, O’Reilly M, Ohls RK, McConaghy S, Eaton F, Zhong S, Yoder M, Thebaud B (2014) Existence, functional impairment and lung repair potential of endothelial colony forming cells in oxygen-induced arrested alveolar growth. Circulation 129(21):2144–2157. doi:10.1161/CIRCULATIONAHA.114.009124

    Article  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi:10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  • Benedict N, Seybert A, Mathier MA (2007) Evidence-based pharmacologic management of pulmonary arterial hypertension. Clin Ther 29(10):2134–2153

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464. doi:10.1215/S1152851705000232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berkelhamer SK, Mestan KK, Steinhorn RH (2013) Pulmonary hypertension in bronchopulmonary dysplasia. Semin Perinatol 37(2):124–131. doi:10.1053/j.semperi.2013.01.009

    Article  PubMed  Google Scholar 

  • Bonner JC (2010) Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. Fibrogenesis Tissue Repair 3:15. doi:10.1186/1755-1536-3-15

    Article  PubMed Central  PubMed  Google Scholar 

  • Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M (2005) Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 172(7):854–860. doi:10.1164/rccm.200410-1325OC

    Article  PubMed  Google Scholar 

  • Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121(15):1735–1745

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang L, Noseda M, Higginson M, Ly M, Patenaude A, Fuller M, Kyle AH, Minchinton AI, Puri MC, Dumont DJ, Karsan A (2012) Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling. Proc Natl Acad Sci U S A 109(18):6993–6998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chateauvieux S, Ichanté J-L, Delorme B, Frouin V, Piétu G, Langonné A, Gallay N, Sensebé L, Martin MT, Moore KA, Charbord P (2007) Molecular profile of mouse stromal mesenchymal stem cells. Physiol Genomics 29(2):128–138. doi:10.1152/physiolgenomics.00197.2006

    Article  CAS  PubMed  Google Scholar 

  • Chow K, Fessel JP, Ihida-Stansbury K, Schmidt EP, Gaskill C, Alvarez D, Graham B, Harrison DG, Wagner DH Jr, Nozik-Grayck E, West JD, Klemm DJ, Majka SM (2013) Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ 3(1):31–49. doi:10.4103/2045-8932.109912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen ED, Ihida-Stansbury K, Lu MM, Panettieri RA, Jones PL, Morrisey EE (2009) Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J Clin Invest 119(9):2538–2549. doi:10.1172/jci38079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. doi:10.1016/j.stem.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  • Cui B, Zhang S, Chen L, Yu J, Widhopf GF II, Fecteau JF, Rassenti LZ, Kipps TJ (2013) Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 73(12):3649–3660. doi:10.1158/0008-5472.CAN-12-3832

    Article  CAS  PubMed  Google Scholar 

  • De Langhe SP, Carraro G, Warburton D, Hajihosseini MK, Bellusci S (2006) Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung. Dev Biol 299(1):52–62

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Mantesso A, Sharpe PT (2010) Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther 10(10):1441–1451. doi:10.1517/14712598.2010.517191

    Article  PubMed  Google Scholar 

  • Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164(5):1575–1585. doi:10.1016/S0002-9440(10)63716-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Firth AL, Yuan JX (2012) Identification of functional progenitor cells in the pulmonary vasculature. Pulm Circ 2(1):84–100. doi:10.4103/2045-8932.94841

    Article  PubMed Central  PubMed  Google Scholar 

  • Firth AL, Yao W, Ogawa A, Madani MM, Lin GY, Yuan JXJ (2010) Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol 298(5):C1217–C1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK, Molitor JA, Henstorf G, Lafyatis R, Pritchard DK, Adams LD, Furst DE, Schwartz SM (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 3(1):e1452

    Article  PubMed Central  PubMed  Google Scholar 

  • Fleming J, Nash RA, Mahoney WM Jr, Schwartz SM (2009) Is scleroderma a vasculopathy? Curr Rheumatol Rep 11(2):103–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Foronjy R, Majka SM (2012) The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells 4:874

    Article  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  CAS  PubMed  Google Scholar 

  • Galli D, Innocenzi A, Staszewsky L, Zanetta L, Sampaolesi M, Bai A, Martinoli E, Carlo E, Balconi G, Fiordaliso F, Chimenti S, Cusella G, Dejana E, Cossu G, Latini R (2005) Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells. Arterioscler Thromb Vasc Biol 25(4):692–697. doi:10.1161/01.ATV.0000156402.52029.ce

    Article  CAS  PubMed  Google Scholar 

  • Galvez BG, Sampaolesi M, Brunelli S, Covarello D, Gavina M, Rossi B, Constantin G, Torrente Y, Cossu G (2006) Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174(2):231–243. doi:10.1083/jcb.200512085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hansmann G, de Jesus Perez VA, Alastalo TP, Alvira CM, Guignabert C, Bekker JM, Schellong S, Urashima T, Wang L, Morrell NW, Rabinovitch M (2008) An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 118(5):1846–1857. doi:10.1172/JCI32503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison RE, Berger R, Haworth SG, Tulloh R, Mache CJ, Morrell NW, Aldred MA, Trembath RC (2005) Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111(4):435–441

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H, Kawabe T, Shimokata K, Hasegawa Y (2010) Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 43(2):161–172. doi:10.1165/rcmb.2009-0031OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellstrom M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    CAS  PubMed  Google Scholar 

  • Hemnes A, Austin E, Robbins I, Loyd J, West J, Newman J, Cogan J, Fox K, Lane K, Robinson L, Hedges L, Talati M, Hamid R, Menon S (2011) Idiopathic and heritable PAH perturb common molecular pathways, correlated with increased MSX1 expression. Pulm Circ 1(3):389–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Hennrick KT, Keeton AG, Nanua S, Kijek TG, Goldsmith AM, Sajjan US, Bentley JK, Lama VN, Moore BB, Schumacher RE, Thannickal VJ, Hershenson MB (2007) Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 175(11):1158–1164. doi:10.1164/rccm.200607-941OC

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28(9):1584–1595. doi:10.1161/ATVBAHA.107.155960

    Article  CAS  PubMed  Google Scholar 

  • Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118(7):722–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A (2008) Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 368(2):305–310. doi:10.1016/j.bbrc.2008.01.090

    Article  CAS  PubMed  Google Scholar 

  • Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43(12 Suppl S):13S–24S

    Article  CAS  PubMed  Google Scholar 

  • Irwin D, Helm K, Campbell N, Imamura M, Fagan K, Harral J, Carr M, Young KA, Klemm D, Gebb S, Dempsey EC, West J, Majka S (2007) Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 293:L941–L951

    Article  CAS  PubMed  Google Scholar 

  • Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN (2008) Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol 181(6):4389–4396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jun D, Garat C, West J, Thorn N, Chow K, Cleaver T, Sullivan T, Torchia EC, Childs C, Shade T, Tadjali M, Lara A, Nozik-Grayck E, Malkoski S, Sorrentino B, Meyrick B, Klemm D, Rojas M, Wagner DH, Majka SM (2011) The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 29(4):725–735. doi:10.1002/stem.604

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. doi:10.1172/JCI39104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kida Y, Duffield JS (2011) Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 38(7):467–473

    Article  PubMed  Google Scholar 

  • Lam CF, Liu YC, Hsu JK, Yeh PA, Su TY, Huang CC, Lin MW, Wu PC, Chang PJ, Tsai YC (2008) Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology 108(3):392–401. doi:10.1097/ALN.0b013e318164ca64

    Article  PubMed  Google Scholar 

  • Lam CF, Roan JN, Lee CH, Chang PJ, Huang CC, Liu YC, Jiang MJ, Tsai YC (2011) Transplantation of endothelial progenitor cells improves pulmonary endothelial function and gas exchange in rabbits with endotoxin-induced acute lung injury. Anesth Analg 112(3):620–627. doi:10.1213/ANE.0b013e3182075da4

    Article  PubMed  Google Scholar 

  • Lama VN, Smith L, Badri L, Flint A, Andrei A-C, Murray S, Wang Z, Liao H, Toews GB, Krebsbach PH, Peters-Golden M, Pinsky DJ, Martinez FJ, Thannickal VJ (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117(4):989–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JW, Gupta N, Serikov V, Matthay MA (2009) Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther 9(10):1259–1270. doi:10.1517/14712590903213651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29(6):913–919. doi:10.1002/stem.643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin S-L, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627. doi:10.2353/ajpath.2008.080433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124(20):3943–3953

    CAS  PubMed  Google Scholar 

  • Majesky MW, Dong XR, Hoglund V, Mahoney WM, Daum G (2011a) The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 31(7):1530–1539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011b) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3):365–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majka SM, Skokan M, Wheeler L, Harral J, Gladson S, Burnham E, Loyd JE, Stenmark KR, Varella-Garcia M, West J (2008) Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 295(6):L1028–L1039. doi:10.1152/ajplung.90449.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majka S, Hagen M, Blackwell T, Harral J, Johnson J, Gendron R, Paradis H, Crona D, Loyd J, Nozik-Grayck E, Stenmark K, West J (2011) Physiologic and molecular consequences of endothelial Bmpr2 mutation. Respir Res 12(1):84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao M, Xu X, Zhang Y, Zhang B, Fu ZH (2013) Endothelial progenitor cells: the promise of cell-based therapies for acute lung injury. Inflamm Res 62(1):3–8. doi:10.1007/s00011-012-0570-3

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10(2):140–151. doi:10.1080/14653240801895296

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27(3):623–633. doi:10.1634/stemcells.2008-0866

    Article  CAS  PubMed  Google Scholar 

  • Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16(12):1400–1406. doi:10.1038/nm.2252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

    CAS  PubMed  Google Scholar 

  • Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl):S20–S31. doi:10.1016/j.jacc.2009.04.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Motoike T, Markham DW, Rossant J, Sato TN (2003) Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35(3):153–159. doi:10.1002/gene.10175

    Article  PubMed  Google Scholar 

  • Passman JN, Dong XR, Wu S-P, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 105(27):9349–9354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel MS, Taylor GP, Bharya S, Al-Sanna’a N, Adatia I, Chitayat D, Suzanne Lewis ME, Human DG (2004) Abnormal pericyte recruitment as a cause for pulmonary hypertension in Adams–Oliver syndrome. Am J Med Genet A 129A(3):294–299. doi:10.1002/ajmg.a.30221

    Article  PubMed  Google Scholar 

  • Patel NM, Kawut SM, Jelic S, Arcasoy SM, Lederer DJ, Borczuk AC (2013) Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis. Eur Respir J 41(6):1324–1330

    Article  PubMed  Google Scholar 

  • Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179(3):1074–1080. doi:10.1016/j.ajpath.2011.06.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pierro M, Thebaud B (2010) Mesenchymal stem cells in chronic lung disease: culprit or savior? Am J Physiol Lung Cell Mol Physiol 298(6):L732–L734. doi:10.1152/ajplung.00099.2010

    Article  CAS  PubMed  Google Scholar 

  • Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM, Schumacher RE, Weiner GM, Filbrun AG, Hershenson MB (2010) Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia. Pediatrics 126(5):e1127–e1133. doi:10.1542/peds.2009-3445

    Article  PubMed  Google Scholar 

  • Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105(43):16626–16630. doi:10.1073/pnas.0808649105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102(2):430–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C (2014) Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation 129(15):1586–1597. doi:10.1161/CIRCULATIONAHA.113.007469

    Article  CAS  PubMed  Google Scholar 

  • Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483. doi:10.1073/pnas.1117988108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubin LJ, Galie N (2004) Pulmonary arterial hypertension: a look to the future. J Am Coll Cardiol 43(12 Suppl S):89S–90S

    Article  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492. doi:10.1126/science.1082254

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. doi:10.1038/nature05282

    Article  CAS  PubMed  Google Scholar 

  • Scott SM, Barth MG, Gaddy LR, Ahl ET Jr (1994) The role of circulating cells in the healing of vascular prostheses. J Vasc Surg 19(4):585–593

    Article  CAS  PubMed  Google Scholar 

  • Seeger W, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs S, Martinez FJ, Semigran MJ, Simonneau G, Wells AU, Vachièry J-L (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62(25 Suppl):D109–D116. doi:10.1016/j.jacc.2013.10.036

    Article  PubMed  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):5S–12S

    Article  PubMed  Google Scholar 

  • Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A (2007) Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 37(2):152–159. doi:10.1165/rcmb.2006-0386OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tagliafico E, Brunelli S, Bergamaschi A, De Angelis L, Scardigli R, Galli D, Battini R, Bianco P, Ferrari S, Cossu G, Ferrari S (2004) TGFbeta/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. J Cell Sci 117(Pt 19):4377–4388. doi:10.1242/jcs.01291

    Article  CAS  PubMed  Google Scholar 

  • Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Boström K, Demer LL (2003) Multilineage potential of cells from the artery wall. Circulation 108(20):2505–2510. doi:10.1161/01.cir.0000096485.64373.c5

    Article  PubMed  Google Scholar 

  • Todd JL, Palmer SM (2011) Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest 140(2):502–508. doi:10.1378/chest.10-2838

    Article  PubMed  Google Scholar 

  • Toti P, Buonocore G, Tanganelli P, Catella AM, Palmeri ML, Vatti R, Seemayer TA (1997) Bronchopulmonary dysplasia of the premature baby: an immunohistochemical study. Pediatr Pulmonol 24(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Townsley MI (2012) Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2:675–709. doi:10.1002/cphy.c100081

    PubMed Central  PubMed  Google Scholar 

  • Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II (2010) A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7(6):718–729. doi:10.1016/j.stem.2010.11.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker N, Badri L, Wettlaufer S, Flint A, Sajjan U, Krebsbach PH, Keshamouni VG, Peters-Golden M, Lama VN (2011) Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol 178(6):2461–2469. doi:10.1016/j.ajpath.2011.01.058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE (2012) Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 21(7):1069–1089. doi:10.1089/scd.2011.0124

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC (2007) Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35(9):1466–1475. doi:10.1016/j.exphem.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2(7):a006692

    Article  PubMed Central  PubMed  Google Scholar 

  • Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q (2006) Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol 87(6):463–474. doi:10.1111/j.1365-2613.2006.00503.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by grants to S.M. Majka from the NIH NHLBI R01HL091105 and R01HL11659701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Majka Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baskir, R., Majka, S. (2015). Pulmonary Vascular Remodeling by Resident Lung Stem and Progenitor Cells. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_12

Download citation

Publish with us

Policies and ethics