Skip to main content

Personalized Physical Activity Monitoring Using Wearable Sensors

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8700))

Abstract

It is a well-known fact that exercising helps people improve their overall well-being; both physiological and psychological health. Regular moderate physical activity improves the risk of disease progression, improves the chances for successful rehabilitation, and lowers the levels of stress hormones. Physical fitness can be categorized in cardiovascular fitness, and muscular strength and endurance. A proper balance between aerobic activities and strength exercises are important to maximize the positive effects. This balance is not always easily obtained, so assistance tools are important. Hence, ambient assisted living (AAL) systems that support and motivate balanced training are desirable. This chapter presents methods to provide this, focusing on the methodologies and concepts implemented by the authors in the physical activity monitoring for aging people (PAMAP) platform. The chapter sets the stage for an architecture to provide personalized activity monitoring using a network of wearable sensors, mainly inertial measurement units (IMU). The main focus is then to describe how to do this in a personalizable way: (1) monitoring to provide an estimate of aerobic activities performed, for which a boosting based method to determine activity type, intensity, frequency, and duration is given; (2) supervise and coach strength activities. Here, methodologies are described for obtaining the parameters needed to provide real-time useful feedback to the user about how to exercise safely using the right technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The dataset is publicly available at http://www.pamap.org/PAMAP_trials.tar.gz.

References

  1. Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., O’Brien, W.L., Bassett, D.R., Schmitz, K.H., Emplaincourt, P.O., Jacobs, D.R., Leon, A.S.: Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32(9), 498–516 (2000)

    Article  Google Scholar 

  2. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 43(10), 3605–3620 (2010)

    Article  MATH  Google Scholar 

  3. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Berger, K.: The Developing Person: Through the Life Span. Worth Publishers, New York (2008)

    Google Scholar 

  5. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  6. Bleser, G., Steffen, D., Weber, M., Hendeby, G., Stricker, D., Fradet, L., Marin, F., Ville, N., Carré, F.: A personalized exercise trainer for the elderly. J. Ambient Intell. Smart Environ. 5, 547–562 (2013)

    Google Scholar 

  7. Bloit, J., Rodet, X.: Short-time Viterbi for online HMM decoding: evaluation on a real-time phone recognition task. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2121–2124 (2008)

    Google Scholar 

  8. Costa, C., Tacconi, D., Tomasi, R., Calva, F., Terreri, V.: RIABLO: a game system for supporting orthopedic rehabilitation. In: Conference of the Italian SIGCHI Chapter (CHItaly 2013), September 2013

    Google Scholar 

  9. Dick, F.W.: Sports Training Principles. A. & C. Black, London (1997)

    Google Scholar 

  10. El-Gohary, M., McNames, J.: Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans. Biomed. Eng. 59(9), 2635–2641 (2012)

    Article  Google Scholar 

  11. Ermes, M., Pärkkä, J., Cluitmans, L.: Advancing from offline to online activity recognition with wearable sensors. In: Proceedings of 30th Annual International IEEE EMBS Conference, Vancouver, Canada, pp. 4451–4454, August 2008

    Google Scholar 

  12. Fisk, A.D., Rogers, W.A., Charness, N., Czaja, S.J., Sharit, J.: Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  13. Haskell, W.L., Lee, I.-M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., Macera, C.A., Heath, G.W., Thompson, P.D., Bauman, A.: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39(8), 34–1423 (2007)

    Article  Google Scholar 

  14. Hocoma. VALEDO\(\textregistered \)MOTION. http://www.hocoma.com/de/produkte/valedo-konzept/valedomotion/. Accessed June 2014

  15. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of Joint Conference on Smart Objects and Ambient Intelligence (sOc-EuSAI), pp. 159–163 (2005)

    Google Scholar 

  16. Kirkendall, D.: Exercise prescription for the healthy adult. Prim. Care 11(1), 23–31 (1984)

    Google Scholar 

  17. Ko, M.H., West, G., Venkatesh, S., Kumar, M.: Using dynamic time warping for online temporal fusion in multisensor systems. Inf. Fusion 9(3), 370–388 (2008)

    Article  Google Scholar 

  18. Long, X., Yin, B., Aarts, R.M.: Single-accelerometer based daily physical activity classification. In: Proceedings of 31st Annual International IEEE EMBS Conference, Minneapolis, MN, USA, pp. 6107–6110, September 2009

    Google Scholar 

  19. Maekawa, T., Watanabe, S.: Unsupervised activity recognition with user’s physical characteristics data. In: Proceedings of IEEE 15th International Symposium on Wearable Computers (ISWC), San Francisco, CA, USA, pp. 89–96, June 2011

    Google Scholar 

  20. Mazzeo, R., Tanaka, H.: Exercise prescription for the elderly: current recommendations. Sports Med. 31, 809–818 (2001)

    Article  Google Scholar 

  21. Miezal, M., Bleser, G., Schmitz, N., Stricker, D.: A generic approach to inertial tracking of arbitrary kinematic chains. In: International Conference on Body Area Networks, Bosten, US, September 2013

    Google Scholar 

  22. Minnen, D., Isbell, C., Essa, I., Starner, T.: Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), vol. 1, pp. 615–620 (2007)

    Google Scholar 

  23. Pärkkä, J., Cluitmans, L., Ermes, M.: Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree. IEEE Trans. Inf. Technol. Biomed. 14(5), 1211–1215 (2010)

    Article  Google Scholar 

  24. Patel, S., Mancinelli, C., Healey, J., Moy, M., Bonato, P.: Using wearable sensors to monitor physical activities of patients with COPD: a comparison of classifier performance. In: Proceedings of 6th International Workshop on Wearable and Implantable Body Sensor Networks (BSN), Berkeley, CA, USA, pp. 234–239, June 2009

    Google Scholar 

  25. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(21), 1–17 (2012)

    Google Scholar 

  26. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  27. Reiss, A.: PAMAP2 Physical Activity Monitoring Data Set. http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring, 22 November 2013

  28. Reiss, A., Hendeby, G., Bleser, G., Stricker, D.: Activity recognition using biomechanical model based pose estimation. In: Lukowicz, P., Kunze, K., Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 42–55. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Reiss, A., Hendeby, G., Stricker, D.: Confidence-based multiclass AdaBoost for physical activity monitoring. In: Proceedings of IEEE 17th International Symposium on Wearable Computers (ISWC), Zurich, Switzerland, September 2013

    Google Scholar 

  30. Reiss, A., Hendeby, G., Stricker, D.: Towards robust activity recognition for everyday life: methods and evaluation. In: Proceedings of 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Venice, Italy, May 2013

    Google Scholar 

  31. Reiss, A., Stricker, D.: Introducing a modular activity monitoring system. In: Proceedings of 33rd Annual International IEEE EMBS Conference, Boston, MA, USA, pp. 5621–5624, August–September 2011

    Google Scholar 

  32. Reiss, A., Stricker, D.: Creating and benchmarking a new dataset for physical activity monitoring. In: Proceedings of 5th Workshop on Affect and Behaviour Related Assistance (ABRA), Crete, Greece, June 2012

    Google Scholar 

  33. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: Proceedings of IEEE 16th International Symposium on Wearable Computers (ISWC), Newcastle, UK, pp. 108–109, June 2012

    Google Scholar 

  34. Reiss, A., Stricker, D.: Personalized mobile physical activity recognition. In: Proceedings of IEEE 17th International Symposium on Wearable Computers (ISWC), Zurich, Switzerland, September 2013

    Google Scholar 

  35. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence. Prentice Hall, Englewood Cliffs (2010)

    Google Scholar 

  36. Salehi, S., Bleser, G., Schmitz, N., Stricker, D.: A low-cost and light-weight motion tracking suit. In: IEEE International Conference on Ubiquitous Intelligence and Computing, Vietri sul Mare, Italy, December 2013

    Google Scholar 

  37. Sears, A., Jacko, J.A.: The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications. CRC Press, Baco Raton (2007)

    Book  Google Scholar 

  38. Taylor, M., McCormick, D., Impson, R., Shawis, T., Griffin, M.: Activity promoting gaming systems in exercise and rehabilitation. J. Rehabil. Res. Dev. 48, 1171–1186 (2011)

    Article  Google Scholar 

  39. Trivisio. Colibri Wireless - Inertial Motion Tracker. http://www.trivisio.com/trivisio-products/colibri-wireless-inertial-motion-tracker-3/. Last Accessed June 2014

  40. Trivisio. MotionVizard. http://www.trivisio.com/trivisio-products/motionvizard-4/. Accessed June 2014

  41. Warburton, D., Nicol, C., Bredin, S.: Health benefits of physical activity: the evidence. Can. Med. Assoc. J. 174(6), 801–809 (2006)

    Article  Google Scholar 

  42. Weber, M., Bleser, G., Hendeby, G., Reiss, A., Stricker, D.: Unsupervised model generation for motion monitoring. In: IEEE International Conference on Systems, Man and Cybernetics - Workshop on Robust Machine Learning Techniques for Human Activity Recognition, Anchorage, pp. 51–54. IEEE (2011)

    Google Scholar 

  43. Weber, M., Liwicki, M., Bleser, G., Stricker, D.: Unsupervised motion pattern learning for motion segmentation. In: International Conference on Pattern Recognition (ICPR), Tsukuba Science City, Japan (2012)

    Google Scholar 

  44. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  45. Winnett, R.A., Carpinelli, R.N.: Potential health-related benefits of resistance training. Prev. Med. 33, 503–513 (2001)

    Article  Google Scholar 

  46. Xsens. MTx. http://www.xsens.com/products/mtx/. Accessed June 2014

  47. Xsens. MVN - Inertial Motion Capture. http://www.xsens.com/products/xsens-mvn/. Accessed June 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bleser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bleser, G., Steffen, D., Reiss, A., Weber, M., Hendeby, G., Fradet, L. (2015). Personalized Physical Activity Monitoring Using Wearable Sensors. In: Holzinger, A., Röcker, C., Ziefle, M. (eds) Smart Health. Lecture Notes in Computer Science(), vol 8700. Springer, Cham. https://doi.org/10.1007/978-3-319-16226-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16226-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16225-6

  • Online ISBN: 978-3-319-16226-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics