Skip to main content

Towards Personalization of Diabetes Therapy Using Computerized Decision Support and Machine Learning: Some Open Problems and Challenges

  • Chapter
  • First Online:
Smart Health

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8700))

Abstract

Diabetes mellitus (DM) is a growing global disease which highly affects the individual patient and represents a global health burden with financial impact on national health care systems. Type 1 DM can only be treated with insulin, whereas for patients with type 2 DM a wide range of therapeutic options are available. These options include lifestyle changes such as change of diet and an increase of physical activity, but also administration of oral or injectable antidiabetic drugs. The diabetes therapy, especially with insulin, is complex. Therapy decisions include various medical and life-style related information. Computerized decision support systems (CDSS) aim to improve the treatment process in patient’s self-management but also in institutional care. Therefore, the personalization of the patient’s diabetes treatment is possible at different levels. It can provide medication support and therapy control, which aid to correctly estimate the personal medication requirements and improves the adherence to therapy goals. It also supports long-term disease management, aiming to develop a personalization of care according to the patient’s risk stratification. Personalization of therapy is also facilitated by using new therapy aids like food and activity recognition systems, lifestyle support tools and pattern recognition for insulin therapy optimization. In this work we cover relevant parameters to personalize diabetes therapy, how CDSS can support the therapy process and the role of machine learning in this context. Moreover, we identify open problems and challenges for the personalization of diabetes therapy with focus on decision support systems and machine learning technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U., Shaw, J.E.: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149 (2014)

    Google Scholar 

  2. Beagley, J., Guariguata, L., Weil, C., Motala, A.A.: Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract. 103, 150–160 (2014)

    Google Scholar 

  3. American Diabetes Association: Economic costs of diabetes in the U.S. in 2007. Diabetes Care 31, 596–615 (2008)

    Google Scholar 

  4. American Diabetes Association: Standards of medical care in diabetes–2014. Diabetes Care 37(Suppl. 1), S14–S80 (2014)

    Google Scholar 

  5. Deakin, T., McShane, C.E., Cade, J.E., Williams, R.D.R.R.: Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst. Rev. CD003417 (2005)

    Google Scholar 

  6. Berger, M.: Diabetes Mellitus. Urban & Fischer Verlag, München (2000)

    Google Scholar 

  7. Holzinger, A., Röcker, C., Ziefle, M.: From smart health to smart hospitals. In: Holzinger, A., Röcker, C., Ziefle, M. (eds.) Smart Health. LNCS, vol. 8700, pp. 1–19. Springer, Heidelberg (2015)

    Google Scholar 

  8. Battelino, T., Bode, B.W.: Continuous glucose monitoring in 2010. Int. J. Clin. Pract. Suppl. 65, 10–15 (2011)

    Google Scholar 

  9. Anastasopoulou, P., Tubic, M., Schmidt, S., Neumann, R., Woll, A., Härtel, S.: Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS One 9, e90606 (2014)

    Google Scholar 

  10. Anthimopoulos, M.M., Gianola, L., Scarnato, L., Diem, P., Mougiakakou, S.G.: A food recognition system for diabetic patients based on an optimized bag-of-features model. IEEE J. Biomed. Heal. Inf. 18, 1261–1271 (2014)

    Google Scholar 

  11. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge Discovery and interactive Data Mining in Bioinformatics–State-of-the-Art, future challenges and research directions. BMC Bioinf. 15(Suppl. 6), I1 (2014)

    Google Scholar 

  12. Nirantharakumar, K., Chen, Y.F., Marshall, T., Webber, J., Coleman, J.J.: Clinical decision support systems in the care of inpatients with diabetes in non-critical care setting: systematic review. Diabet. Med. 29, 698–708 (2012)

    Google Scholar 

  13. Cleveringa, F.G.W., Gorter, K.J., van den Donk, M., van Gijsel, J., Rutten, G.E.H.M.: Computerized decision support systems in primary care for type 2 diabetes patients only improve patients’ outcomes when combined with feedback on performance and case management: a systematic review. Diabetes Technol. Ther. 15, 180–192 (2013)

    Google Scholar 

  14. Ammenwerth, E., Schnell-Inderst, P., Machan, C., Siebert, U.: The effect of electronic prescribing on medication errors and adverse drug events: a systematic review. J. Am. Med. Inform. Assoc. 15, 585–600 (2008)

    Google Scholar 

  15. Heise, T., Hermanski, L., Nosek, L., Feldman, A., Rasmussen, S., Haahr, H.: Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes. Metab. 14, 859–864 (2012)

    Google Scholar 

  16. Paschou, S.A., Leslie, R.D.: Personalizing guidelines for diabetes management: twilight or dawn of the expert? BMC Med. 11, 161 (2013)

    Google Scholar 

  17. Walsh, J., Roberts, R., Bailey, T.: Guidelines for insulin dosing in continuous subcutaneous insulin infusion using new formulas from a retrospective study of individuals with optimal glucose levels. J. Diabetes Sci. Technol. 4, 1174–1181 (2010)

    Google Scholar 

  18. Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R., Matthews, D.R.: Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35, 1364–1379 (2012)

    Google Scholar 

  19. Glauber, H.S., Rishe, N., Karnieli, E.: Introduction to personalized medicine in diabetes mellitus. Rambam Maimonides Med. J. 5, e0002 (2014)

    Google Scholar 

  20. Ambrosius, W.T., Danis, R.P., Goff, D.C., Greven, C.M., Gerstein, H.C., Cohen, R.M., Riddle, M.C., Miller, M.E., Buse, J.B., Bonds, D.E., Peterson, K.A., Rosenberg, Y.D., Perdue, L.H., Esser, B.A., Seaquist, L.A., Felicetta, J.V., Chew, E.Y.: Lack of association between thiazolidinediones and macular edema in type 2 diabetes: the ACCORD eye substudy. Arch. Ophthalmol. 128, 312–318 (2010)

    Google Scholar 

  21. Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Turner, R.C., Holman, R.R.: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000)

    Google Scholar 

  22. Pozzilli, P., Leslie, R.D., Chan, J., De Fronzo, R., Monnier, L., Raz, I., Del Prato, S.: The A1C and ABCD of glycaemia management in type 2 diabetes: a physician’s personalized approach. Diabetes Metab. Res. Rev. 26, 239–244 (2010)

    Google Scholar 

  23. Valencia, W.M., Florez, H.: Pharmacological treatment of diabetes in older people. Diabetes Obes. Metab. 16, 1192–1203 (2014)

    Google Scholar 

  24. Van den Berghe, G., Wouters, P.: Intensive insulin therapy in critically ill patients. New Engl. J. 345, 1359–1367 (2001)

    Google Scholar 

  25. Abdelmalak, B.B., Lansang, M.C.: Revisiting tight glycemic control in perioperative and critically ill patients: when one size may not fit all. J. Clin. Anesth. 25, 499–507 (2013)

    Google Scholar 

  26. Klonoff, D.C.: Personalized medicine for diabetes. J. Diabetes Sci. Technol. 2, 335–341 (2008)

    Google Scholar 

  27. Raz, I., Riddle, M.C., Rosenstock, J., Buse, J.B., Inzucchi, S.E., Home, P.D., Del Prato, S., Ferrannini, E., Chan, J.C.N., Leiter, L.A., Leroith, D., Defronzo, R., Cefalu, W.T.: Personalized management of hyperglycemia in type 2 diabetes: reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care. 36, 1779–1788 (2013)

    Google Scholar 

  28. Wilkinson, M.J., Nathan, A.G., Huang, E.S.: Personalized decision support in type 2 diabetes mellitus: current evidence and future directions. Curr. Diab. Rep. 13, 205–212 (2013)

    Google Scholar 

  29. Walsh, J., Roberts, R., Varma, C.: Using Insulin: Everything You Need for Success with Insulin. Torrey Pines Press, San Diego (2003)

    Google Scholar 

  30. Colin, I.M., Paris, I.: Glucose meters with built-in automated bolus calculator: gadget or real value for insulin-treated diabetic patients? Diabetes Ther. 4, 1–11 (2013)

    Google Scholar 

  31. Klonoff, D.C.: The current status of bolus calculator decision-support software. J. Diabetes Sci. Technol. 6, 990–994 (2012)

    Google Scholar 

  32. Lunze, K., Singh, T., Walter, M., Brendel, M.D., Leonhardt, S.: Blood glucose control algorithms for type 1 diabetic patients: a methodological review. Biomed. Signal Process. Control 8, 107–119 (2013)

    Google Scholar 

  33. Turksoy, K., Cinar, A.: Adaptive control of artificial pancreas systems - a review. J. Healthc. Eng. 5, 1–22 (2014)

    Google Scholar 

  34. Georga, E.I., Protopappas, V.C., Fotiadis, D.I.: Glucose prediction in type 1 and type 2 diabetic patients using data driven techniques. In: Knowledge-Oriented Applications in Data Mining (2011)

    Google Scholar 

  35. Hovorka, R., Chassin, L.J., Ellmerer, M., Plank, J., Wilinska, M.E.: A simulation model of glucose regulation in the critically ill. Physiol. Meas. 29, 959–978 (2008)

    Google Scholar 

  36. Otto, E., Semotok, C., Andrysek, J., Basir, O.: An intelligent diabetes software prototype: predicting blood glucose levels and recommending regimen changes. Diabetes Technol. Ther. 2, 569–576 (2000)

    Google Scholar 

  37. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Orsini Federici, M., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., Wilinska, M.E.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905–920 (2004)

    Google Scholar 

  38. Albisser, A.M., Baidal, D., Alejandro, R., Ricordi, C.: Home blood glucose prediction: clinical feasibility and validation in islet cell transplantation candidates. Diabetologia 48, 1273–1279 (2005)

    Google Scholar 

  39. Albisser, A.M., Sakkal, S., Wright, C.: Home blood glucose prediction: validation, safety, and efficacy testing in clinical diabetes. Diabetes Technol. Ther. 7, 487–496 (2005)

    Google Scholar 

  40. Albisser, A.M.: A graphical user interface for diabetes management that integrates glucose prediction and decision support. Diabetes Technol. Ther. 7, 264–273 (2005)

    Google Scholar 

  41. Sáenz, A., Brito, M., Morón, I., Torralba, A., García-Sanz, E., Redondo, J.: Development and validation of a computer application to aid the physician’s decision-making process at the start of and during treatment with insulin in type 2 diabetes: a randomized and controlled trial. J. Diabetes Sci. Technol. 6, 581–588 (2012)

    Google Scholar 

  42. Wan, Q., Makeham, M., Zwar, N.A., Petche, S.: Qualitative evaluation of a diabetes electronic decision support tool: views of users. BMC Med. Inform. Decis. Mak. 12, 61 (2012)

    Google Scholar 

  43. Smart, C.E., King, B.R., McElduff, P., Collins, C.E.: In children using intensive insulin therapy, a 20-g variation in carbohydrate amount significantly impacts on postprandial glycaemia. Diabet. Med. 29, e21–e24 (2012)

    Google Scholar 

  44. Bishop, F.K., Maahs, D.M., Spiegel, G., Owen, D., Klingensmith, G.J., Bortsov, A., Thomas, J., Mayer-Davis, E.J.: The carbohydrate counting in adolescents with type 1 diabetes (CCAT) study. Diabetes Spectr. 22, 56–62 (2009)

    Google Scholar 

  45. Smart, C.E., Ross, K., Edge, J.A., King, B.R., McElduff, P., Collins, C.E.: Can children with Type 1 diabetes and their caregivers estimate the carbohydrate content of meals and snacks? Diabet. Med. 27, 348–353 (2010)

    Google Scholar 

  46. Smart, C.E.M., Evans, M., O’Connell, S.M., McElduff, P., Lopez, P.E., Jones, T.W., Davis, E.A., King, B.R.: Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 36, 3897–3902 (2013)

    Google Scholar 

  47. Pankowska, E., Blazik, M.: Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J. Diabetes Sci. Technol. 4, 571–576 (2010)

    Google Scholar 

  48. Kawano, Y., Yanai, K.: Real-time mobile food recognition system. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2013)

    Google Scholar 

  49. Rabasa-Lhoret, R., Bourque, J., Ducros, F., Chiasson, J.L.: Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro). Diabetes Care 24, 625–630 (2001)

    Google Scholar 

  50. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., “Pedja” Klasnja, P., Koscher, K., LaMarca, A., Landay, J.A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., Wyatt, D.: The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Comput. 7, 32–41 (2008)

    Google Scholar 

  51. Bonomi, A.G., Westerterp, K.R.: Advances in physical activity monitoring and lifestyle interventions in obesity: a review. Int. J. Obes. (Lond) 36, 167–177 (2012)

    Google Scholar 

  52. Helal, A., Cook, D.J., Schmalz, M.: Smart home-based health platform for behavioral monitoring and alteration of diabetes patients. J. Diabetes Sci. Technol. 3, 141–148 (2009)

    Google Scholar 

  53. Petrella, R.J., Schuurman, J.C., Ling, C.X., Luo, Y.: A Smartphone-based Personalized System for Alleviating Type-2 Diabetes. American Telemedicine Association. p. P58 (2014)

    Google Scholar 

  54. Klein, M., Mogles, N., van Wissen, A.: Intelligent mobile support for therapy adherence and behavior change. J. Biomed. Inform. 51, 137–151 (2014)

    Google Scholar 

  55. Marling, C., Wiley, M., Bunescu, R., Shubrook, J., Schwartz, F.: Emerging applications for intelligent diabetes management. AI Mag. 33, 67 (2012)

    Google Scholar 

  56. Monnier, L., Colette, C.: Glycemic variability: should we and can we prevent it? Diabetes Care 31(Suppl. 2), S150–S154 (2008)

    Google Scholar 

  57. Marling, C.R., Struble, N.W., Bunescu, R.C., Shubrook, J.H., Schwartz, F.L.: A consensus perceived glycemic variability metric. J. Diabetes Sci. Technol. 7, 871–879 (2013)

    Google Scholar 

  58. Rodbard, D.: Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol. Ther. 11(Suppl. 1), S55–S67 (2009)

    Google Scholar 

  59. Wiley, M., Bunescu, R.: Automatic detection of excessive glycemic variability for diabetes management. In: Machine Learning and Applications and Workshops (ICMLA), 2011 10th International Conference on Machine Learning and Applications. pp. 148–154 (2011)

    Google Scholar 

  60. Grady, M., Campbell, D., MacLeod, K., Srinivasan, A.: Evaluation of a blood glucose monitoring system with automatic high- and low-pattern recognition software in insulin-using patients: pattern detection and patient-reported insights. J. Diabetes Sci. Technol. 7, 970–978 (2013)

    Google Scholar 

  61. Skrøvseth, S.O., Arsand, E., Godtliebsen, F., Hartvigsen, G.: Mobile phone-based pattern recognition and data analysis for patients with type 1 diabetes. Diabetes Technol. Ther. 14, 1–7 (2012)

    Google Scholar 

  62. Stevens, R.J., Kothari, V., Adler, A.I., Stratton, I.M.: The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin. Sci. (Lond) 101, 671–679 (2001)

    Google Scholar 

  63. Wilson, P.W., D’Agostino, R.B., Levy, D., Belanger, A.M., Silbershatz, H., Kannel, W.B.: Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998)

    Google Scholar 

  64. Lagani, V., Koumakis, L., Chiarugi, F., Lakasing, E., Tsamardinos, I.: A systematic review of predictive risk models for diabetes complications based on large scale clinical studies. J. Diabetes Complications 27, 407–413 (2013)

    Google Scholar 

  65. Fortini, R.: Population Health Management Global Director of Healthcare Transformation, New York (2012)

    Google Scholar 

  66. Herder, C., Kowall, B., Tabak, A.G., Rathmann, W.: The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57, 16–29 (2014)

    Google Scholar 

  67. Choi, S.B., Kim, W.J., Yoo, T.K., Park, J.S., Chung, J.W., Lee, Y., Kang, E.S., Kim, D.W.: Screening for prediabetes using machine learning models. Comput. Math. Meth. Med. 2014, 618976 (2014)

    Google Scholar 

  68. MacLean, C.D., Littenberg, B., Gagnon, M.: Diabetes decision support: initial experience with the Vermont diabetes information system. Am. J. Public Health 96, 593–595 (2006)

    Google Scholar 

  69. Kengne, A.P., Masconi, K., Mbanya, V.N., Lekoubou, A., Echouffo-Tcheugui, J.B., Matsha, T.E.: Risk predictive modelling for diabetes and cardiovascular disease. Crit. Rev. Clin. Lab. Sci. 51, 1–12 (2014)

    Google Scholar 

  70. Umpierrez, G.E., Smiley, D., Zisman, A., Prieto, L.M., Palacio, A., Ceron, M., Puig, A., Mejia, R.: Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes (RABBIT 2 trial). Diabetes Care 30, 2181–2186 (2007)

    Google Scholar 

  71. Umpierrez, G.E., Smiley, D., Jacobs, S., Peng, L., Temponi, A., Mulligan, P., Umpierrez, D., Newton, C., Olson, D., Rizzo, M.: Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). Diabetes Care 34(Suppl.), 256–261 (2011)

    Google Scholar 

  72. Umpierrez, G.E., Hellman, R., Korytkowski, M.T., Kosiborod, M., Maynard, G.A., Montori, V.M., Seley, J.J., Van den Berghe, G.: Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 16–38 (2012)

    Google Scholar 

  73. Umpierrez, G.E., Smiley, D., Hermayer, K., Khan, A., Olson, D.E., Newton, C., Jacobs, S., Rizzo, M., Peng, L., Reyes, D., Pinzon, I., Fereira, M.E., Hunt, V., Gore, A., Toyoshima, M.T., Fonseca, V.A.: Randomized study comparing a Basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. Diabetes Care 36, 2169–2174 (2013)

    Google Scholar 

  74. Jaspers, M.W.M., Smeulers, M., Vermeulen, H., Peute, L.W.: Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J. Am. Med. Inform. Assoc. 18, 327–334 (2011)

    Google Scholar 

  75. Moghissi, E.S., Korytkowski, M.T., DiNardo, M., Einhorn, D., Hellman, R., Hirsch, I.B., Inzucchi, S.E., Ismail-Beigi, F., Kirkman, M.S., Umpierrez, G.E.: American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 32, 1119–1131 (2009)

    Google Scholar 

  76. Rayman, G., National Health Service: National Diabetes Inpatient Audit 2012. United Kingdom (2013)

    Google Scholar 

  77. Radley, D.C., Wasserman, M.R., Olsho, L.E., Shoemaker, S.J., Spranca, M.D., Bradshaw, B.: Reduction in medication errors in hospitals due to adoption of computerized provider order entry systems. J. Am. Med. Inform. Assoc. 20, 470–476 (2013)

    Google Scholar 

  78. Gillaizeau, F., Chan, E., Trinquart, L., Colombet, I., Walton, R.T., Rège-Walther, M., Burnand, B., Durieux, P.: Computerized advice on drug dosage to improve prescribing practice. Cochrane Database Syst. Rev. 11, CD002894 (2013)

    Google Scholar 

  79. Yamashita, S., Ng, E., Brommecker, F., Silverberg, J., Adhikari, N.K.J.: Implementation of the glucommander method of adjusting insulin infusions in critically ill patients. Can. J. Hosp. Pharm. 64, 333–339 (2011)

    Google Scholar 

  80. Davidson, P.C., Steed, R.D., Bode, B.W.: Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. Diabetes Care 28, 2418–2423 (2005)

    Google Scholar 

  81. Pearson, S.-A., Moxey, A., Robertson, J., Hains, I., Williamson, M., Reeve, J., Newby, D.: Do computerised clinical decision support systems for prescribing change practice? A systematic review of the literature (1990–2007). BMC Health Serv. Res. 9, 154 (2009)

    Google Scholar 

  82. Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 330, 765 (2005)

    Google Scholar 

  83. Carli-Ghabarou, D., Seidling, H.M., Bonnabry, P., Lovis, C.: A survey-based inventory of clinical decision support systems in computerised provider order entry in Swiss hospitals. Swiss Med. Wkly. 143, w13894 (2013)

    Google Scholar 

  84. Belle, A., Kon, M.A., Najarian, K.: Biomedical informatics for computer-aided decision support systems: a survey. Sci. World J. 2013, 769639 (2013)

    Google Scholar 

  85. Chen, W., Cockrell, C.H., Ward, K., Najarian, K.: Predictability of intracranial pressure level in traumatic brain injury: features extraction, statistical analysis and machine learning-based evaluation. Int. J. Data Min. Bioinform. 8, 480–494 (2013)

    Google Scholar 

  86. Van Ginneken, B., ter Haar Romeny, B.M., Viergever, M.A.: Computer-aided diagnosis in chest radiography: a survey. IEEE Trans. Med. Imaging 20, 1228–1241 (2001)

    Google Scholar 

  87. Ji, S.-Y., Smith, R., Huynh, T., Najarian, K.: A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries. BMC Med. Inform. Decis. Mak. 9, 2 (2009)

    Google Scholar 

  88. Polat, K., Akdemir, B., Güneş, S.: Computer aided diagnosis of ECG data on the least square support vector machine. Digit. Signal Process. 18, 25–32 (2008)

    Google Scholar 

  89. Watrous, R.L., Thompson, W.R., Ackerman, S.J.: The impact of computer-assisted auscultation on physician referrals of asymptomatic patients with heart murmurs. Clin. Cardiol. 31, 79–83 (2008)

    Google Scholar 

  90. Lisboa, P.J., Taktak, A.F.G.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw. 19, 408–415 (2006)

    MATH  Google Scholar 

  91. De Andrade, L., Lynch, C., Carvalho, E., Rodrigues, C.G., Vissoci, J.R.N., Passos, G.F., Pietrobon, R., Nihei, O.K., de Barros Carvalho, M.D.: System dynamics modeling in the evaluation of delays of care in ST-segment elevation myocardial infarction patients within a tiered health system. PLoS One 9, e103577 (2014)

    Google Scholar 

  92. Zhou, Y., Yu, F., Duong, T.: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS One 9, e90405 (2014)

    Google Scholar 

  93. Cabezas, M., Oliver, A., Valverde, S., Beltran, B., Freixenet, J., Vilanova, J.C., Ramió-Torrentà, L., Rovira, A., Lladó, X.: BOOST: A supervised approach for multiple sclerosis lesion segmentation. J. Neurosci. Meth. 237, 108–117 (2014)

    Google Scholar 

  94. Suk, H.-I., Lee, S.-W., Shen, D.: Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Front. Aging Neurosci. 6, 168 (2014)

    Google Scholar 

  95. Li, Q., Rajagopalan, C., Clifford, G.D.: A machine learning approach to multi-level ECG signal quality classification. Comput. Meth. Programs Biomed. 117, 435–447 (2014)

    Google Scholar 

  96. Mitchell, M.T.: Pattern Recognition and Machine Learning (1997)

    Google Scholar 

  97. Witten, I.H., Eibe, F., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  98. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  99. Wang, Y., Wu, X., Mo, X.: A novel adaptive-weighted-average framework for blood glucose prediction. Diabetes Technol. Ther. 15, 792–801 (2013)

    Google Scholar 

  100. Bremer, T., Gough, D.A.: Is blood glucose predictable from previous values? A solicitation for data. Diabetes 48, 445–451 (1999)

    Google Scholar 

  101. Gani, A., Gribok, A.V., Rajaraman, S., Ward, W.K., Reifman, J.: Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng. 56, 246–254 (2009)

    Google Scholar 

  102. Lu, Y., Rajaraman, S., Ward, W.K., Vigersky, R.A., Reifman, J.: Predicting human subcutaneous glucose concentration in real time: a universal data-driven approach. In: Conference on Proceedings of the IEEE Engineering in Medicine and Biology Society 2011, pp. 7945–7948 (2011)

    Google Scholar 

  103. Zanderigo, F., Sparacino, G., Kovatchev, B., Cobelli, C.: Glucose prediction algorithms from continuous monitoring data: assessment of accuracy via continuous glucose error-grid analysis. J. Diabetes Sci. Technol. 1, 645–651 (2007)

    Google Scholar 

  104. Robertson, G., Lehmann, E.D., Sandham, W., Hamilton, D.: Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: a proof-of-concept pilot study. J. Electr. Comput. Eng. 2011, 1–11 (2011)

    Google Scholar 

  105. Stahl, F.: Diabetes Mellitus Glucose Prediction by Linear and Bayesian Ensemble Modeling. control.lth.se. (2012)

    Google Scholar 

  106. Pappada, S.M., Cameron, B.D., Rosman, P.M.: Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J. Diabetes Sci. Technol. 2, 792–801 (2008)

    Google Scholar 

  107. Zainuddin, Z., Pauline, O., Ardil, C.: A neural network approach in predicting the blood glucose level for diabetic patients. Int. J. Comput. Intell. 5, 1–8 (2009)

    Google Scholar 

  108. Bondia, J., Tarin, C., Garcia-Gabin, W., Esteve, E., Fernandez-Real, J.M., Ricart, W., Vehi, J.: Using support vector machines to detect therapeutically incorrect measurements by the MiniMed CGMS(R). J. Diabetes Sci. Technol. 2, 622–629 (2008)

    Google Scholar 

  109. Daskalaki, E., Prountzou, A., Diem, P., Mougiakakou, S.G.: Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol. Ther. 14, 168–174 (2012)

    Google Scholar 

  110. Pappada, S.M., Cameron, B.D., Rosman, P.M., Bourey, R.E., Papadimos, T.J., Olorunto, W., Borst, M.J.: Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol. Ther. 13, 135–141 (2011)

    Google Scholar 

  111. Heinemann, L., Franc, S., Phillip, M., Battelino, T., Ampudia-Blasco, F.J., Bolinder, J., Diem, P., Pickup, J., Hans Devries, J.: Reimbursement for continuous glucose monitoring: a European view. J. Diabetes Sci. Technol. 6, 1498–1502 (2012)

    Google Scholar 

  112. Sudharsan, B., Peeples, M., Shomali, M.: Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. J. Diabetes Sci. Technol. 9, 86–90 (2015)

    Google Scholar 

  113. Bondia, J., Tarin, C., Garcia-Gabin, W., Esteve, E., Fernandez-Real, J.M., Ricart, W., Vehi, J.: Using support vector machines to detect therapeutically incorrect measurements by the MiniMed CGMS(R). J. Diabetes Sci. Technol. 2, 622–629 (2008)

    Google Scholar 

  114. Qu, Y., Jacober, S.J., Zhang, Q., Wolka, L.L., DeVries, J.H.: Rate of hypoglycemia in insulin-treated patients with type 2 diabetes can be predicted from glycemic variability data. Diabetes Technol. Ther. 14, 1008–1012 (2012)

    Google Scholar 

  115. Bastani, M.: Model-free intelligent diabetes management using machine learning (2014)

    Google Scholar 

  116. Zitar, R.A., Al-jabali, A.: Towards neural network model for insulin/glucose in diabetics-II. Informatica, 29, 227–232 (2005)

    Google Scholar 

  117. Ruch, N., Joss, F., Jimmy, G., Melzer, K., Hänggi, J., Mäder, U.: Neural network versus activity-specific prediction equations for energy expenditure estimation in children. J. Appl. Physiol. 115, 1229–1236 (2013)

    Google Scholar 

  118. Ellis, K., Kerr, J., Godbole, S., Lanckriet, G., Wing, D., Marshall, S.: A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 35, 2191–2203 (2014)

    Google Scholar 

  119. Gärtner, A.: Patientendatamanagementsysteme als Softwaremedizinprodukt ? Eine regulatorische Betrachtung, Erkrath (2011)

    Google Scholar 

  120. Holzinger, A., Jurisica, I.: Knowledge discovery and data mining in biomedical informatics: the future is in integrative, interactive machine learning solutions. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 1–18. Springer, Heidelberg (2014)

    Google Scholar 

  121. Holzinger, A.: Availability, Reliability, and Security in Information Systems and HCI. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Donsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Donsa, K., Spat, S., Beck, P., Pieber, T.R., Holzinger, A. (2015). Towards Personalization of Diabetes Therapy Using Computerized Decision Support and Machine Learning: Some Open Problems and Challenges. In: Holzinger, A., Röcker, C., Ziefle, M. (eds) Smart Health. Lecture Notes in Computer Science(), vol 8700. Springer, Cham. https://doi.org/10.1007/978-3-319-16226-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16226-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16225-6

  • Online ISBN: 978-3-319-16226-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics