Skip to main content

Antiaging and Performance-Enhancing Drugs

  • Chapter
  • First Online:
Masterful Care of the Aging Athlete
  • 574 Accesses

Abstract

Physical demands from activity take a toll on the body, especially as the athlete ages. Abilities and routines that seemed second nature become more difficult to perform. Therefore, a variety of antiaging and performance drugs have “hit the market” with promises to recapture the sense of youth and ease performance at high level activities, or slow the aging process. Many drugs have been shown to improve cognition, physical function, physiologic parameters, and performance. In this chapter, we will discuss the more common supplements as well as what is new on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baillargeon J, Urban RJ, Ottenbacher KJ, Pierson KS, Goodwin JS. Trends in androgen prescribing in the United States, 2001 to 2011. JAMA Intern Med. 2013;173(15):1465–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Larsen PR, Kronenberg H, Melmed S, Polonsky K. Williams textbook of endocrinology. 10th ed. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  3. Bhasin S, Jasuja R. Selective androgen receptor modulators (SARMs) as function promoting therapies. Curr Opin Clin Nutr Metab Care. 2009;12(3):232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE, Thomas BJ, Leder BZ. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(11):1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab. 1983;56(6):1278.

    Article  CAS  PubMed  Google Scholar 

  6. Davidson JM, Chen JJ, Crapo L, Gray GD, Greenleaf WJ, Catania JA. Hormonal changes and sexual function in aging men. J Clin Endocrinol Metab. 1983;57:71–7.

    Article  CAS  PubMed  Google Scholar 

  7. Orwoll E, Lambert LC, Marshall LM, Phipps K, Blank J, Barrett-Connor E, Cauley J, Ensrud K, Cummings S. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91:1336–44.

    Article  CAS  PubMed  Google Scholar 

  8. Brawer MK. Testosterone replacement in men with andropause: an overview. Rev Urol. 2004;6(Suppl 6):S9–S15.

    PubMed  PubMed Central  Google Scholar 

  9. Travison TG, Araujo AB, O’Donnell AB, Kupelian V, McKinlay JB. A population-level decline in serum testosterone levels in American men. J Clin Endocrinol Metab. 2007;92(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  10. Srinath R, Dobs A. Enobosarm (GTx-024, S-22): a potential treatment for cachexia. Future Oncol. 2014;10(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  11. Marzette E, Leeuwenburgh C. Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol. 2006;41(12):1234–8.

    Article  CAS  Google Scholar 

  12. Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT. Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal. 2008;6:e010.

    PubMed  PubMed Central  Google Scholar 

  13. Gautier A, Bonnet F, Dubois S, Massart C, Grosheny C, Bachelot A, Aubѐ C, Balkau B, Ducluzeau PH. Associations between visceral adipose tissue, inflammation and sex steroid concentrations in men. Clin Enocrinol (Oxf). 2013;78(3):373–8.

    Article  CAS  Google Scholar 

  14. Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab. 1996;81(12):4358.

    PubMed  CAS  Google Scholar 

  15. Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab. 2006;91(3):843.

    Article  CAS  PubMed  Google Scholar 

  16. Laaksonen DE, Niskanen L, Punnonen K, Nyysӧnen K, Tuomeainen TP, Volkonen VP, Salonen R, Salonen JT. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27(5):1036.

    Article  CAS  PubMed  Google Scholar 

  17. Nettleship JE, Jones RD, Channer KS, Jones TH. Testosterone and coronary artery disease. Front Horm Res. 2009;37:91–107.

    Article  CAS  PubMed  Google Scholar 

  18. Heller RF, Wheeler MJ, Micallef J, Miller NE, Lewis B. Relationship of high density lipoprotein cholesterol with total and free testosterone and sex hormone binding globulin. Acta Endocrinol. 1983;104(2):253–6.

    Article  PubMed  CAS  Google Scholar 

  19. Morris PD, Channer KS. Testosterone and cardiovascular disease in men. Asian J Androl. 2012;14(3):428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest. 1982;70(4):716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moran JM, Martin RR, Pedrera-Canal M, Alonso-Terron J, Rodriguez-Velasco FJ, Pedrera-Zamorano JD. Low testosterone levels are associated with poor peripheral bone mineral density and quantitative bone ultrasound at phalanges and calcaneus in healthy elderly men. Biol Res Nurs. 2015;17(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  22. LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett-Connor E, Ensrud KE, Hoffman AR, Laughlin G, Ohlsson C, Orwoll ES. Osteoporotic fractures in Men Study Group. The effects of serum testosterone, estradiol, and sex hormone binding globulin level on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joshi D, van Schoor NM, de Rone W, Schaap LA, Comijs HC, Beekman AT, Lips P. Low free testosterone levels are associated with prevalence and incidence of depressive symptoms in older men. Clin Endocrinol. 2010;72(2):232.

    Article  CAS  Google Scholar 

  24. Shores MM, Moceri VM, Sloan KL, Mastusmoto AM, Kivlahan DR. Low testosterone levels predict incident depressive illness in older men: effects of age and medical morbidity. J Clin Psychiatry. 2005;66(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  25. Yeap BB. Hormonal changes and their impact on cognition and mental health of ageing men. Maturitas. 2014;79(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  26. Moffat SD, Zonderman AB, Metter EJ, Blackman MR, Harman SM, Resnick SM. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 2002;87(11):5001–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ottenbacher KJ, Oteenbacher ME, Ottenbacher AJ, Acha AA, Ostire GV. Androgen treatment and muscle strength in elderly men: a meta-analysis. J Am Geriatr Soc. 2006;54(11):1666–73.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Corona G, Maseroli E, Rastrelli G, Isidori AM, Sforza A, Mannucci E, Maggi M. Cardiovascular risk associated with testosterone-boosting medications: a systematic review and meta-analysis. Expert Opin Drug Saf. 2014;13(10):1327–51.

    Article  CAS  PubMed  Google Scholar 

  29. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, Dlewati A, Staley J, Santanna J, Kapoor SC, Attie MF, Haddad JG Jr, Strom BL. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(6):1966.

    PubMed  CAS  Google Scholar 

  30. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci. 2001;56(5):M266.

    Article  CAS  Google Scholar 

  31. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with lower serum testosterone. J Clin Endocrinol Metab. 2004;89(2):503.

    Article  CAS  PubMed  Google Scholar 

  32. Tracz MJ, Sideras K, Bolon͂a ER, Haddad RM, Kennedy CC, Uraga MV, Caples SM, Erwin PJ, Montori VM. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metab. 2006;91(6):2011–6.

    Article  CAS  PubMed  Google Scholar 

  33. Shores MM, Kivlahan DR, Sadak TI, Li EJ, Matsumoto AM. A randomized, double-blind, placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression (dysthymia or minor depression). J Clin Pyschiatry. 2009;70(7):1009–16.

    Article  CAS  Google Scholar 

  34. Wang C, Swedloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, Matsumoto AM, Weber T, Berman N. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. Testosterone Gel Study Group. J Clin Endocrinol Metab. 2000;85:2839–53.

    PubMed  CAS  Google Scholar 

  35. Seidman SN, Orr G, Raviv G, Levi R, Roose SP, Kravitz E, Amiaz R, Weiser M. Effects of testosterone replacement in middle-aged men with dysthymia: a randomized, placebo-controlled clinical trial. J Clin Psychopharmacol. 2009;29(3):216–21.

    Article  CAS  PubMed  Google Scholar 

  36. Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci. 1994;108(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  37. Cherrier MM, Asthana S, Plymate S, Baker L, Matsumoto AM, Peskind E, Raskind MA, Brodkin K, Bremner W, Petrova A, LaTendresse S, Craft S. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology. 2001;57:80–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Motori VM. Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2006;91(6):1995–2010.

    Article  CAS  PubMed  Google Scholar 

  39. Vigen R, O’Donnell CI, Barόn AE, Grunwald GK, Maddox TM, Bradley SM, Barqawi A, Woning G, Wierman ME, Plomondon ME, Rumsfeld JS, Ho PM. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310(17):1829–36.

    Article  CAS  PubMed  Google Scholar 

  40. Borst SE, Shuster JJ, Zou B, Ye F, Jia H, Wokhlu A, Yarrow JF. Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: a systematic review and meta-analysis. BMC Med. 2014;23:211.

    Article  CAS  Google Scholar 

  41. Calof OM, Singh AB, Lee ML, Kenny AM, Urban RJ, Tenover JL, Bhasin S. Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials. J Gerontol A Biol Sci Med Sci. 2005;60:1451–7.

    Article  PubMed  Google Scholar 

  42. Borst SE, Yarrow JF. Injection of testosterone may be safe and more effective than transdermal administration for combating loss of muscle and bone in older men. Am J Physiol Endocrinol Metab. 2015;308(12):E1035–42.

    Article  CAS  PubMed  Google Scholar 

  43. Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev. 2015;146–148:28–41.

    Article  CAS  PubMed  Google Scholar 

  44. Frѐmont L. Biological effects of resveratrol. Life Sci. 2000;66(8):663–73.

    Article  Google Scholar 

  45. Liu B, Zhang X, Zhang W, Zhen H. New enlightenment of French paradox: resveratrol’s potential for cancer chemoprevention and anti-cancer therapy. Cancer Biol Ther. 2007;6(12):1833–6.

    Article  CAS  PubMed  Google Scholar 

  46. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523–6.

    Article  CAS  PubMed  Google Scholar 

  47. Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci. 2015;1348(1):150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: potential therapeutic agents and their mechanisms of action. Pharmacol Res. 2015;99:86–100.

    Article  CAS  PubMed  Google Scholar 

  49. Wang DT, Yin Y, Yang YJ, Lv PJ, Shi Y, Lu L, Wei LB. Resveratrol prevents TNF-α-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int Immunopharmacol. 2014;19:206–13.

    Article  CAS  PubMed  Google Scholar 

  50. Ayub A, Poulose N, Raju R. Resveratrol improves survival and prolongs life following hemorrhagic shock. Mol Med. 2015;21:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zunino SJ, Peerson JM, Freytag TL, Breksa AP, Bonnel EL, Woodhouse LR, Storms DH. Dietary grape powder increases IL-1β and IL-6 production by lipopolysaccharide-activated monocytes and reduces plasma concentrations of large LDL and large LDL-cholesterol particles in obese humans. Br J Nutr. 2014;112(3):369–80.

    Article  CAS  PubMed  Google Scholar 

  52. Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26(2):170–81.

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res. 2009;1:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhardwaj A, Sethi G, Vadhan-Raj S, Bueso-Ramos C, Takada Y, Garu U, Nair AS, Shishodia S, Aggarwal BB. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood. 2007; 109(6):2293–302.

    Article  CAS  PubMed  Google Scholar 

  55. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, Jacobson E, Gumbleton T, Oakervee H, Cavenagh J. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed or refractory multiple myeloma. Br J Haematol. 2013;160(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  56. Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87.

    Article  PubMed  Google Scholar 

  57. Cummings DE, Merriam GR. Growth hormone therapy in adults. Annu Rev Med. 2003;54:513–33.

    Article  CAS  PubMed  Google Scholar 

  58. Blackman MR, Sorkin JD, Münzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O’Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92.

    Article  CAS  PubMed  Google Scholar 

  59. Yuen KCJ, Chong LE, Rhoads SA. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. Evaluation of adult growth hormone deficiency: current and future perspectives. SourceEndotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–2013.

  60. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev. 1993;14(1):20–39.

    Article  CAS  PubMed  Google Scholar 

  61. Kargi AY, Merriam GR. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. Age-related changes in the growth hormone axis and growth hormone therapy in the elderly. SourceEndotext [Internet]. South Dartmouth: MDText.com, Inc.; 2000–2011.

    Google Scholar 

  62. O’Connor KG, Tobin JD, Harman SM, Plato CC, Roy TA, Sherman SS, Blackman MR. Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J Gerontol A Biol Sci Med Sci. 1998;53(3):M176–82.

    Article  PubMed  Google Scholar 

  63. Pavlov EP, Harman SM, Merriam GR, Gelato MC, Blackman MR. Response of growth hormone (GH) and somatomedin-C to GH-releasing hormone in healthy aging me. J Clin Endocrinol Metab. 1986;62(3):595.

    Article  CAS  PubMed  Google Scholar 

  64. Iovino M, Monteleone P, Steardo L. Repetitive growth hormone-releasing hormone administration restores the attenuated growth hormone (GH) response to GH-releasing hormone testing in normal aging. J Clin Endocrinol Metab. 1989;69(4):910.

    Article  CAS  PubMed  Google Scholar 

  65. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  66. Vitiello MV, Moe KE, Merriam GR, Mazzoni G, Buchner DH, Schwartz RS. Growth hormone releasing hormone improves the cognition of healthy older adults. Neurobiol Aging. 2006;27(2):318–23. Epub 2005 Mar 23

    Article  CAS  PubMed  Google Scholar 

  67. Rudman D, Feller AG, Cohn L, Shetty KR, Rudman IW, Draper MW. Effects of human growth hormone on body composition in elderly men. Horm Res. 1991;36(Suppl 1):73–81.

    Article  PubMed  Google Scholar 

  68. Appelman-Dijkstra NM, Claessen KM, Hamdy NA, Pereira AM, Biermasz NR. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with growth hormone deficiency (GHD): the Leiden Cohort Study. Clin Endocrinol. 2014;81(5):727–35.

    Article  CAS  Google Scholar 

  69. Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4(2):195–212.

    Article  CAS  PubMed  Google Scholar 

  70. Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, Hoffman AR. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med. 2007;146(2):104–15.

    Article  PubMed  Google Scholar 

  71. Stochholm K, Johannsson G. Reviewing the safety of GH replacement therapy in adults. Growth Hormon IGF Res. 2015;25(4):149–57.

    Article  CAS  Google Scholar 

  72. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, Hwang DJ, Dalton JT, Miller DD. Nonsteroidal selective androgen receptor modulators (SARMs): dissociating the anabolic and androgenic activities of the androgen receptor for therapeutic benefit. J Med Chem. 2009;52(12):3597–617.

    Article  CAS  PubMed  Google Scholar 

  73. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT. Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab. 2006;2(3):146–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, Johnston MA, Steiner MS. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind randomized controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dalton JT, Taylor RP, Mohler ML, Steiner MS. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer. Curr Opin Support Palliat Care. 2013;7(4):345–51.

    Article  PubMed  Google Scholar 

  76. Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu D, Miller DD, Dalton JT. Selective androgen receptor modulator (SARM) treatment prevents bone loss and reduces body fact in ovariectomized rats. Pharm Res. 2007;24(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  77. Xu S, Cai Y, Wei Y. mTOR signaling from cellular senescence to organismal aging. Aging Dis. 2013;5(4):263–73.

    PubMed  PubMed Central  Google Scholar 

  78. Kaeberlein M. mTOR inhibition: from aging to autism and beyond. Scientifica (Cairo). 2013;2013:849186.

    Google Scholar 

  79. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  80. Kaeberlein M. Rapamycin and ageing: when, for how long, and how much? J Genet Genomics. 2014;41(9):459–63.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006;20(2):174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kenyon CJ. The genetics of ageing. Nature. 2010;464(7288):504–12.

    Article  CAS  PubMed  Google Scholar 

  83. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to slow aging in humans: are we ready? Aging Cell. 2015;14(4):497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Warner HR. Superoxide dismutase, aging, and degenerative disease. Free Radic Biol Med. 1994;17(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  85. Kawamoto EM, Vasconcelos AR, Degaspari S, Böhmer AE, Scavone C, Marcourakis T. Age-related changes in nitric oxide activity, cyclic GMP, and TBARS levels in platelets and erythrocytes reflect the oxidative status in central nervous system. Age (Dordr). 2013;35(2):331–42. https://doi.org/10.1007/s11357-011-9365-7. Epub 2012 Jan 26.

    Article  CAS  Google Scholar 

  86. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003;78(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  87. Kulkarni SS, Cantό C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaneb Yaseen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaseen, Z. (2018). Antiaging and Performance-Enhancing Drugs. In: Wright, V., Middleton, K. (eds) Masterful Care of the Aging Athlete. Springer, Cham. https://doi.org/10.1007/978-3-319-16223-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16223-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16222-5

  • Online ISBN: 978-3-319-16223-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics