Skip to main content

Longevity and Epigenetics

  • Chapter
  • First Online:
Masterful Care of the Aging Athlete
  • 561 Accesses

Abstract

In 2003, one of the most historic projects in modern medicine was completed, which laid out our genetic blueprint. The Human Genome Project resulted from the culmination of decades of work which includes the discovery of the double helix of deoxyribonucleic acid (DNA) and creation of laboratory tools for DNA mapping and sequencing. The human genome is made up of roughly 20,500 genes—far fewer than the initial estimates of 100,000 or more. These genes are comprised from nearly three billion A-T and G-C base pairs. A single-nucleotide mutation can equate to a nonsense mutation, leading to transcription of a premature stop codon and ultimately a nonfunctional protein. These nonfunctional proteins are known to cause disorders such as Duchenne’s muscular dystrophy (DMD), which results from an incomplete copy of the dystrophin gene being transcribed and then translated into a defective protein product which is vital to the muscle fiber cell membrane [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/

  2. https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/

  3. http://www.genome.gov/10001345/

  4. Eccleston A, DeWitt N, Gunter C, Marte B, Nath D. Epigenetics. Nat Insight. 2007;447(7143):396–440.

    Google Scholar 

  5. Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng J, Fouse S, Fan G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res. 2007;61(5 Pt 2):58R–63R.

    Article  CAS  PubMed  Google Scholar 

  7. Phillips T. The role of methylation in gene expression. Nat Educ. 2008;1(1):116.

    Google Scholar 

  8. McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol. 2011;110(1):258–63.

    Article  CAS  PubMed  Google Scholar 

  9. McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 2001;11(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  10. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baltimore D, Boldin MP, O’Connell RM, et al. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9(8):839–45.

    Article  CAS  Google Scholar 

  12. Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    Article  CAS  Google Scholar 

  13. McGee SL, Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms. Clin Exp Pharmacol Physiol. 2006;33(4):395–9.

    Article  CAS  PubMed  Google Scholar 

  14. Potthoff MJ, Wu H, Arnold MA, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 2007;117(9):2459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keller P, Vollaard NB, Gustafsson T, et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol. 2011;110(1):46–59.

    Article  CAS  PubMed  Google Scholar 

  16. Fernandes T, Magalhaes FC, Roque FR, et al. Exercise training prevents the microvascular rarefaction in hyper-tension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513–20.

    Article  CAS  PubMed  Google Scholar 

  17. Werner C, Furster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47.

    Article  PubMed  Google Scholar 

  18. Pallas M, Verdaguer E, Tajes M, et al. Modulation of sirtuins: new targets for antiageing. Recent Pat CNS Drug Discov. 2008;3(1):61–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Irvine MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irvine, J. (2018). Longevity and Epigenetics. In: Wright, V., Middleton, K. (eds) Masterful Care of the Aging Athlete. Springer, Cham. https://doi.org/10.1007/978-3-319-16223-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16223-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16222-5

  • Online ISBN: 978-3-319-16223-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics