Skip to main content

Intermediate Biofuels to Support a Flexible Application of Biomass

  • Chapter
Smart Bioenergy

Abstract

As the previous book chapters concluded, the future bioenergy provision concepts for power, heat and transport fuels are characterised by more complex demands. A future energy market is characterised by the need for a sustainable flexible energy carrier with homogeneous properties for application in the fields of CHP, heat and fuel. To some extent these energy carriers are already available today (see Chaps. 4, 5, 6 and 7). However, in many cases untreated biomass cannot fulfil the requirements of existing and future conversion processes or demands respectively. As far as solid biofuels are concerned, the high moisture content of untreated biofuels coupled with a low energy density and high biological activity require the development of often costly storage, transport and conversion techniques. Various research activities are still ongoing to improve the utilisation of biofuels in existing and future technologies, available infrastructure and therefore also in logistic and storage issues. A similar development can be observed regarding the biogenic substitutes for natural gas (biomethane, bio-SNG). Such upgraded “new” – or rather “advanced” – solid and gaseous biofuels are high energy value products for gasification and combustion in industrial conversion plants as well as for domestic applications with excellent advantages in flexible energy provision. The amount of advanced solid biofuels in the markets of heating and power or combined heat and power systems will increase, as will the share of the biogenic substitutes for natural gas with further development and process optimisation.

This chapter reviews the current developments in selected biomass pretreatment processes and their intermediate biofuel products that have the potential to increase flexible bioenergy production in the short and mid-term. On the one hand, these include biomass densification without thermal treatment as well as torrefaction and hydrothermal treatment for producing intermediate solid biomass. On the other hand, technologies for biogenic substitutes for natural gas are evaluated. The focus lies on the surplus value of the technologies in terms of flexibility during energy production or use of the advanced solid biofuels or biogenic substitutes for natural gas as intermediate bioenergy carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    e.g. in the European-FP7-project “SECTOR – Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction (2012–2015) or in the national project financed by the BMWI “FlexiTorr” (Flexibilisation of energy supply in small bioenergy generation plants due to the use of torrefied biomass), 2013–2013.

References

  1. T. Balling, M. Beil, A. Hauptmann, G. Reinhold, H. Seide, W. Urban, F. Valentin, B. Wirth, Biomethaneinspeisung in der Landwirtschaft, KTBL-Schrift (Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012)

    Google Scholar 

  2. F. Bauer, C. Hulteberg, T. Persson, D. Tamm, Biogas Upgrading – Review of Commercial Technologies, SGC Rapport (Swedisch Gas Technology Centre (SGC), Malmö, 2013)

    Google Scholar 

  3. R. Berger, Hein K R G Verfahrensübersicht: Synthesegaserzeugung aus Biomasse. FVS Fachtagung, 2003

    Google Scholar 

  4. J. Berner, Pelletswerk am Stück. Pellets Markt und Trend, Ausgabe 04/09, S. 26–28, Aug 2009

    Google Scholar 

  5. T.G. Bridgeman, J.M. Jones, I. Shield, P.T. Williams, Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87, 844–56 (2008)

    Article  Google Scholar 

  6. J. Daniel-Gromke, V. Denysenko, P. Sauter, K. Naumann, M. Scheftelowitz, A. Krautz, M. Beil, W. Beyrich, W. Peters et al., Stromerzeugung aus Biomasse (BMU, Leipzig/Berlin/Halle/Kassel, 2013)

    Google Scholar 

  7. DBFZ Internal analytic report 2013

    Google Scholar 

  8. M. Deutmeyer, D. Bradley, B. Hektor, J.R. Hess, L. Nikolaisen, J.S. Tumuluru, M. Wild, Possible effect of torrefaction on biomass trade. IEA bioenergy task 40, June 2012

    Google Scholar 

  9. DIN EN 145881, Solid biofuels – Terminology, definitions and descriptions; German version EN 14588:2010. Published 2011

    Google Scholar 

  10. EurObservÉR, Solid Biomass Barometer. Dec 2013

    Google Scholar 

  11. A. Florentinus, C. Hamelinck, A.V.D. Bos, R. Winkel, M. Cuijpers, Potential of Biofuels for Shipping – Final Report (ECOFYS Netherlands B.V, Utrecht, 2012)

    Google Scholar 

  12. FNR, Leitfaden Biogasaufbereitung und -einspeisung (Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow, 2014)

    Google Scholar 

  13. GasNZV, Gasnetzzugangsverordnung (Gas Network Access Ordinance) – Verordnung über den Zugang zu Gasversorgungsnetzen, 2012

    Google Scholar 

  14. L. Grond, P. Schulze, J. Holstein, Systems Analyses Power to Gas: A Technology Review. Part of TKI project TKIG01038 (KEMA Nederland B.V., Groningen, 2013). http://www.dnv.com/binaries/dnv%20kema%20%282013%29%20-%20systems%20analyses%20power%20to%20gas%20-%20technology%20review_tcm4-567461.pdf

  15. ISO 17225, ISO 17225- 18 Solid biofuels – Fuel specifications and classes. Part 8 under development, 2014

    Google Scholar 

  16. M. Kaltschmitt, Energie aus Biomasse, Grundlagen, Techniken und Verfahren. 2., neu bearb. und erw. Aufl (Springer, Berlin, 2009)

    Google Scholar 

  17. J. Kiel, R. Zwart, J. Witt, SECTOR – Production of solid sustainable energy carriers from biomass by means of torrefaction. International workshop on biomass torrefaction for energy, Albi (FR), 10. Mai 2012

    Google Scholar 

  18. M. Klemm, R. Wilhelm, A. Hiller, Untersuchung zur Einsatzmöglichkeit einer Biomassefestbettvergasung in einem virtuellen Kraftwerksverbund. 14. Symposium “Energie aus Biomasse” Biogas, Flüssigkraftstoffe, Festbrennstoffe (Otti-Kolleg) Kloster Banz, 24–25 Nov 2005

    Google Scholar 

  19. M. Klemm, R. Wilhelm, A. Hiller, A Dezentrale Energieversorgung auf Basis einer Biomassefestbettvergasung in einem virtuellen Kraftwerksverbund. In: Tagungsband 37. Kraftwerkstechnisches Kolloquium. Dresden, 2005

    Google Scholar 

  20. M. Klemm, A. Clemens, R. Blümel, F. Kietzmann, Das HTC-Verfahren für Biomasse – ein Neubeginn für Kohle? 10. Jahrestagung Kraftwerke, Düsseldorf, 12 Nov 2013

    Google Scholar 

  21. H.A.M. Knoef (ed.), Handbook Biomass Gasification (BTG Biomass Technology Group BV, Enschede, 2005)

    Google Scholar 

  22. J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89, 1763–1783 (2010)

    Article  Google Scholar 

  23. F. Lettner, H. Timmerer, P. Haselbacher, Biomass gasification – State of the art description. Report for Intelligent Energy Europe, Grant agreement no. EIE/06/078/SI2.447511, 2007

    Google Scholar 

  24. I. Obernberger, A. Hammerschmid, Dezentrale Biomasse-Kraft-Wärme-Kopplungstechnologien (dbv – Verlag für die Technische Universität Graz, Graz, 1999)

    Google Scholar 

  25. I. Obernberger, G. Thek, Herstellung und energetische Nutzung von Pellets: Produktionsprozess, Eigenschaften, Feuerungstechnik, Ökologie und Wirtschaftlichkeit, 1. Aufl. (BIOS Bioenergiesysteme, Graz, 2009

    Google Scholar 

  26. A. Öhlinger, M. Förster, R. Kneer, Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel 104, 607–613 (2013)

    Article  Google Scholar 

  27. W. Rading, Vergasung als Option der thermochemischen Nutzung von Biomasse. TerraTec, Leipzig, 5–8 Mar 2007

    Google Scholar 

  28. C. Schön, H. Hartmann, Charakterisierung von Holzbriketts: Brennstofftechnische, physikalische und stoffliche Eigenschaften – eine Marktstichprobe. Berichte aus dem TFZ (Technologie- und Förderzentrum (TFZ), Straubing, 2011)

    Google Scholar 

  29. J. Shankar Tumuluru, S. Sokhansanj, J.R. Hess, C.T. Wright, R.D. Boardman, Review: a review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7, 384–401 (2011)

    Article  Google Scholar 

  30. S. Steinbeiss, G. Gleixner, M. Antonietti, Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 41(6), 1301–1310 (2009)

    Article  Google Scholar 

  31. Technische Universität Wien, Überblick über Biogasaufbereitungstechnologien zur Produktion von Biomethan, Bio-methane Regions (2012)

    Google Scholar 

  32. D. Thrän et al., Sustainable Strategies for Biomass Use in the European Context. Analysis in the charged debate on national guidelines and the competition between solid, liquid and gaseous biofuels. IE-Report 1/2006, Leipzig, 2006

    Google Scholar 

  33. J. Witt, Holzpelletbereitstellung für Kleinfeuerungsanlagen – Analyse und Bewertung von Einflussmöglichkeiten auf die Brennstoffqualität, Dissertation TUHH, DBFZ Report Nr. 14, Leipzig 2012

    Google Scholar 

  34. J. Witt, K. Schaubach, J. Kiel, M. Carbo, M. Wojcik, Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor. 7th Rostocker Bioenergieforum, 20–21 Juni 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Billig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Billig, E., Witt, J., Klemm, M., Kirsten, C., Khalsa, J., Thrän, D. (2015). Intermediate Biofuels to Support a Flexible Application of Biomass. In: Thrän, D. (eds) Smart Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-16193-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16193-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16192-1

  • Online ISBN: 978-3-319-16193-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics