Skip to main content

Flexible Power Generation from Solid Biofuels

  • Chapter
Smart Bioenergy

Abstract

Flexible and demand-based production of electricity and heat (combined heat and power – CHP) from solid biomass is an extremely interesting concept for a renewable energy system as the used fuel shows excellent storability. However, conversion and power generation technology limit flexibility for several reasons.

Combined heat and power plants for the production of solid biomass are today designed for base load operation. The most common systems are steam cycles, organic Rankine cycles (ORC) and combinations of gasification and gas engines. Other available technologies include Stirling engines, fuel cells and thermoelectric generators (TEGs). Some technologies are already able to provide flexibility in power production. Extracting turbines, for example, are able to change the power-to-heat ratio of the system. It is possible to increase flexibility by using additional or upgraded units such as heat or gas storages, new steam turbines or new control systems. Potential solutions for increasing flexibility in combined heat and power production from solid biomass are expected to include micro-CHP systems and gasification units with high flexibility and high power-to-heat ratio. Larger plants may show less flexibility due to their thermal inertness (which sometimes has been part of the design, e.g. to stabilize combustion of fuels with low heating values).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tertiary control is used to stabilize the grid for deviations lasting longer than 15 min.

References

  1. N. Szarka et al., A novel role for bioenergy: a flexible demand-oriented power-supply. Energy 61, 18–26 (2013)

    Article  Google Scholar 

  2. A. Pollex, A. Ortwein, M. Kaltschmitt, Thermo-chemical conversion of solid biofuels. Biomass Convers. Biorefinery 2(1), 21–39 (2012)

    Article  Google Scholar 

  3. M. Kaltschmitt, H. Hartmann, H. Hofbauer, Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 2nd edn. (Springer, Berlin/Heidelberg, 2009)

    Book  Google Scholar 

  4. R. Warnecke, Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy 18(6), 489–497 (2000)

    Article  Google Scholar 

  5. M. Netzer, P. Kolbitsch, Grate firing or bubbling fluidized bed firing – an economic and technological comparison. Presentation at the 4th central European biomass conference, Graz, 2014

    Google Scholar 

  6. W. Kalide, H. Sigloch, Energieumwandlung in Kraft- und Arbeitsmaschinen: Kolbenmaschinen – Strömungsmaschinen – Kraftwerke, 10th edn. (Hanser, München, 2010)

    Book  Google Scholar 

  7. S. van Loo, J. Koppejan (eds.), The Handbook of Biomass Combustion and Co-firing (Earthscan, London/Sterling, 2008)

    Google Scholar 

  8. M. Van den Broek, B. Vanslambrouck, M. De Paepe, Electricity generation from biomass: Organic rankine cycle versus steam cycle. Presentation at the world bioenergy 2012, Jönköping, Sweden, 2012

    Google Scholar 

  9. T. Augustin, Small scale biomass co-generation with modern steam engines. Presented at the IEA-workshop, Copenhagen, Denmark, 2010

    Google Scholar 

  10. M. Schmid, Dezentrale Stromerzeugung mit Feststoffbiomasse; Projektreport (Ökozentrum Langenbruck, Langenbruck, 2007)

    Google Scholar 

  11. M.M.J. Knoope et al., Future technological and economic performance of IGCC and FT production facilities with and without CO2 capture: combining component based learning curve and bottom-up analysis. Int. J. Greenh. Gas Contr. 16, 287–310 (2013)

    Article  Google Scholar 

  12. P. Kurzweil, Brennstoffzellentechnik – Grundlagen, Komponenten, Systeme, Anwendungen, 2nd edn. (Springer, Wiesbaden, 2013)

    Google Scholar 

  13. B. Thomas, Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik, Betriebsdaten, 2nd edn. (Vogel, Wurzburg, 2011)

    Google Scholar 

  14. B. Kongtragool, S. Wongwises, A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 7(2), 131–154 (2003)

    Article  Google Scholar 

  15. H.I. Onovwiona, V.I. Ugursal, Residential cogeneration systems: review of the current technology. Renew. Sustain. Energy Rev. 10(5), 389–431 (2006)

    Article  Google Scholar 

  16. L. Dong, H. Liu, S. Riffat, Development of small-scale and micro-scale biomass-fuelled CHP systems – a literature review. Appl. Therm. Eng. 29(11–12), 2119–2126 (2009)

    Article  Google Scholar 

  17. S. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Ther. Eng. 23(8), 913–935 (2003)

    Article  Google Scholar 

  18. S.H. Powell, J.T. Hamrick, A wood-fired gas turbine plant, in Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, 1986, pp. 244–249

    Google Scholar 

  19. H. Spliethoff, Power Generation from Solid Fuels, 1st edn. (Springer, Berlin/Heidelberg, 2010)

    Book  Google Scholar 

  20. C.-K. Weng, A. Ray, Robust wide-range control of steam-electric power plants. IEEE Trans. Contr. Syst. Technol. 5(1), 74–88 (1997)

    Article  Google Scholar 

  21. General Electric Company, D-17 Steam Turbine Fact Sheet (Company Brochure), 2012

    Google Scholar 

  22. G. Scholz, Rohrleitungs- und Apparatebau – Planungshandbuch für Industrie- und Fernwärmeversorgung (Springer, Berlin/Heidelberg, 2012)

    Book  Google Scholar 

  23. B. Sanner et al. Strategic Research and Innovation Agenda for Renewable Heating & Cooling; European Technology Platform on Renewable Heating and Cooling, Brussels, 2013

    Google Scholar 

  24. M. Scheftelowitz et al., Stromerzeugung aus Biomasse 03MAP250 (Zwischenbericht Deutsches Biomasseforschungszentrum, Leipzig, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ortwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortwein, A., Lenz, V. (2015). Flexible Power Generation from Solid Biofuels. In: Thrän, D. (eds) Smart Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-16193-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16193-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16192-1

  • Online ISBN: 978-3-319-16193-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics