Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1686 Accesses

Abstract

This chapter presents the design and measurement results of the fourth and final ultra-low-voltage prototype. Since signal processing applications are the focus of this book, a JPEG encoder is chosen as a representative DSP block to validate the design strategy which has been proposed in this book. The purpose of the JPEG encoder is to demonstrate that the proposed circuit and architectural techniques are generally applicable in any large and complex ultra-low-voltage DSP design. The targets of this prototype remain unchanged: operation at ultra-low supply voltages to enable a high energy-efficiency, operating frequencies in the range of n × 10MHz and high variation-resilience. The design efforts which are made to accomplish these targets are profoundly discussed in this chapter. The JPEG encoder is fabricated in a 40 nm CMOS technology. An overview of the JPEG encoding algorithm is provided, together with the division of the various subblocks which realize this algorithm. The general architectural and gate-level design choices for this ultra-low-voltage prototype is discussed. The chapter also covers the detailed design of the subblocks of the JPEG encoder, with a focus on how the research targets—high energy-efficiency, speed and variation-resilience—are achieved. The measurement results are examined profoundly, whereas an extensive state-of-the-art comparison is provided between all published ultra-low-voltage processors in advanced nanometer CMOS technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akgun O, Rodrigues J, Leblebici Y, Owall V (2012) High-level energy estimation in the sub-Vt domain: Simulation and measurement of a cardiac event detector. IEEE Trans Biomed Circuits Syst 6(1)15–27. DOI: 10.1109/TBCAS.2011.2157505

    Article  Google Scholar 

  2. Bol D, De Vos J, Hocquet C, Botman F, Durvaux F, Boyd S, Flandre D, Legat JD (2013) Sleepwalker: A 25-MHz 0.4-V sub-mm2 7-μW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J Solid-State Circuits 48(1):20–32. DOI: 10.1109/JSSC.2012.2218067

    Article  Google Scholar 

  3. Clerc S, Abouzeid F, Argoud F, Kumar A, Kumar R, Roche P (2011) A 240mV 1MHz, 340mV 10MHz, 40nm CMOS, 252 bits frame decoder using ultra-low voltage circuit design platform. In: Proceedings of the IEEE international conference on electronics, circuits and systems (ICECS), pp 117–120. DOI: 10.1109/ICECS.2011.6122228

    Google Scholar 

  4. Cosemans S, Dehaene W, Catthoor F (2008) A 3.6pJ/access 480MHz, 128Kbit on-chip SRAM with 850MHz boost mode in 90nm CMOS with tunable sense amplifiers to cope with variability. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 278–281. DOI: 10.1109/ESSCIRC.2008.4681846

    Google Scholar 

  5. Ickes N, Gammie G, Sinangil M, Rithe R, Gu J, Wang A, Mair H, Datla S, Rong B, Honnavara-Prasad S, Ho L, Baldwin G, Buss D, Chandrakasan A, Ko U (2012) A 28 nm 0.6 V low power DSP for mobile applications. IEEE J Solid-State Circuits 47(1):35–46. DOI: 10.1109/JSSC.2011.2169689

    Article  Google Scholar 

  6. Jain S, Khare S, Yada S, Ambili V, Salihundam P, Ramani S, Muthukumar S, Srinivasan M, Kumar A, Gb S, Ramanarayanan R, Erraguntla V, Howard J, Vangal S, Dighe S, Ruhl G, Aseron P, Wilson H, Borkar N, De V, Borkar S (2012) A 280mV-to-1.2V wide-operating-range IA-32 processor in 32nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 66–68. DOI: 10.1109/ISSCC.2012.6176932

    Google Scholar 

  7. Jeon D, Seok M, Chakrabarti C, Blaauw D, Sylvester D (2012) A super-pipelined energy efficient subthreshold 240 MS/s FFT core in 65nm CMOS. IEEE J Solid-State Circuits 47(1):23–34. DOI: 10.1109/JSSC.2011.2169311

    Article  Google Scholar 

  8. Karandikar A, Parhi K (1998) Low power SRAM design using hierarchical divided bit-line approach. In: Proceedings of the IEEE international conference on computer design (ICCD), pp 82–88. DOI: 10.1109/ICCD.1998.727027

    Google Scholar 

  9. Kaul H, Anders M, Mathew S, Hsu S, Agarwal A, Krishnamurthy R, Borkar S (2008) A 320mV 56μW 411GOPS/Watt ultra-low voltage motion estimation accelerator in 65nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 316–317. DOI: 10.1109/ISSCC.2008.4523184

    Google Scholar 

  10. Konijnenburg M, Cho Y, Ashouei M, Gemmeke T, Kim C, Hulzink J, Stuyt J, Jung M, Huisken J, Ryu S, Kim J, de Groot H (2013) Reliable and energy-efficient 1MHz 0.4V dynamically reconfigurable SoC for ExG applications in 40nm LP CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 430–431. DOI: 10.1109/ISSCC.2013.6487801

    Google Scholar 

  11. Kovac M, Ranganathan N (1995) JAGUAR: a fully pipelined VLSI architecture for JPEG image compression standard. Proceedings of the IEEE 83(2):247–258. DOI: 10.1109/5.364464

    Article  Google Scholar 

  12. Kwong J, Ramadass Y, Verma N, Chandrakasan A (2009) A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter. IEEE J Solid-State Circuits 44(1):115–126. DOI: 10.1109/JSSC.2008.2007160

    Article  Google Scholar 

  13. Lutkemeier S, Jungeblut T, Berge H, Aunet S, Porrmann M, Ruckert U (2013) A 65nm 32b subthreshold processor with 9T multi-Vt SRAM and adaptive supply voltage control. IEEE J Solid-State Circuits 48(1):8–19. DOI: 10.1109/JSSC.2012.2220671

    Article  Google Scholar 

  14. Makipää J, Turnquist MJ, Laulainen E, Koskinen L (2012) Timing-error detection design considerations in subthreshold: An 8-bit microprocessor in 65nm CMOS. J Low Power Electron Appl 2(2):180–196. DOI: 10.3390/jlpea2020180

    Article  Google Scholar 

  15. Pennebaker WB, Mitchell JL (1993) JPEG: Still image data compression standard. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  16. Pu Y, Pineda de Gyvez J, Corporaal H, Ha Y (2010) An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage. IEEE J Solid-State Circuits 45(3):668–680. DOI: 10.1109/JSSC.2009.2039684

    Article  Google Scholar 

  17. Reynders N, Dehaene W (2014) A 210mV 5MHz variation-resilient near-threshold JPEG encoder in 40nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 456–457

    Google Scholar 

  18. Reynders N, Rooseleer B, Dehaene W (2014) Energy-efficient logic and SRAM design: A case study. In: Proceedings of the IEEE faible tension faible consommation conference (FTFC), pp 1–4. DOI: 10.1109/FTFC.2014.6828616

    Google Scholar 

  19. Rooseleer B, Cosemans S, Dehaene W (2012) A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell stability and a dual swing data link. IEEE J Solid State Circuits 47(7):1784–1796. DOI: 10.1109/JSSC.2012.2191316

    Article  Google Scholar 

  20. Wallace G (1992) The JPEG still picture compression standard. IEEE Tran Consum Electron 38(1):xviii–xxxiv. DOI: 10.1109/30.125072

    Google Scholar 

  21. Yoshimoto M, Anami K, Shinohara H, Yoshihara T, Takagi H, Nagao S, Kayano S, Nakano T (1983) A divided word-line structure in the static RAM and its application to a 64K full CMOS RAM. IEEE J Solid State Circuits 18(5):479–485. DOI: 10.1109/JSSC.1983.1051981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reynders, N., Dehaene, W. (2015). JPEG Encoder. In: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-16136-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16136-5_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16135-8

  • Online ISBN: 978-3-319-16136-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics