Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In today’s society, portable electronic devices play a major role in everyday life. These portable systems demand an ever increasing energy-efficiency. Every year, a single system is expected to comprise more complexity while at the same time extending its autonomy. Many contradicting expectations are driving research toward more energy-efficient digital circuits. Since the evolution of the energy capacity of batteries only increases very slowly, energy-efficient circuits are key to reaching the ever increasing expectations of customers. Moreover, many new fields are emerging which have even more stringent requirements on energy-efficiency. Especially the medical world can greatly profit from today’s evolutions. For instance, cheap sensor nodes and networks which can autonomously perform signal processing algorithms while demonstrating long lifetimes are becoming more and more feasible. This sets the general context of this book, and will be further clarified in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calhoun B, Chandrakasan A (2004) Characterizing and modeling minimum energy operation for subthreshold circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 90–95. DOI: 10.1109/LPE.2004.1349316

  2. Dehaene W, Gielen G, Steyaert M, Danneels H, Desmedt V, De Roover C, Li Z, Verhelst M, Van Helleputte N, Radiom S, Walravens C, Pleysier L (2009) RFID, where are they? In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 36–43. DOI: 10.1109/ESSCIRC.2009.5325928

    Google Scholar 

  3. Dennard RH, Gaensslen F, Yu HN, Rideout L, Bassous E, Leblanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits SC-9(5):256–268

    Article  Google Scholar 

  4. Gonzalez R, Gordon B, Horowitz M (1997) Supply and threshold voltage scaling for low power CMOS. IEEE J Solid-State Circuits 32(8):1210–1216. DOI: 10.1109/4.604077

    Article  Google Scholar 

  5. IEEE IEEE Xplore digital library. URL http://ieeexplore.ieee.org

  6. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  7. Rabaey J, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  8. Reynders N, Dehaene W (2011) A 190mV supply, 10MHz, 90nm CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques. In: Proceedings of the IEEE Asian solid-state circuits conference (A-SSCC), pp 113–116, DOI: 10.1109/ASSCC.2011.6123617

  9. Reynders N, Dehaene W (2012) Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans Circuits Syst–Part II: Express Briefs 59(12):898–902. DOI: 10.1109/TCSII.2012.2231022

    Article  Google Scholar 

  10. Reynders N, Dehaene W (2012) Variation-resilient sub-threshold circuit solutions for ultra-low-power digital signal processors with 10MHz clock frequency. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 474–477. DOI: 10.1109/ESSCIRC.2012.6341358

  11. Reynders N, Dehaene W (2014) A 210mV 5MHz variation-resilient near-threshold JPEG encoder in 40nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 456–457

    Google Scholar 

  12. Reynders N, Dehaene W (2015) On the effect of technology scaling on variation-resilient sub-threshold circuits. Elsevier Solid-State Electron 103:19–29

    Article  Google Scholar 

  13. Reynders N, Rooseleer B, Dehaene W (2014) Energy-efficient logic and SRAM design: A case study. In: Proceedings of the IEEE faible tension faible consommation conference (FTFC), pp 1–4. DOI: 10.1109/FTFC.2014.6828616

  14. Soeleman H, Roy K (1999) Ultra-low power digital subthreshold logic circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 94–96

    Google Scholar 

  15. Stanford University VLSI Research Group CPU database. URL http://cpudb.stanford.edu/

  16. Swanson R, Meindl J (1972) Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J Solid-State Circuits 7(2):146–153, DOI: 10.1109/JSSC.1972.1050260

    Article  Google Scholar 

  17. Wang A, Chandrakasan A, Kosonocky S (2002) Optimal supply and threshold scaling for subthreshold CMOS circuits. In: Proceedings of the IEEE computer society annual symposium on VLSI (ISVLSI), pp 5–9. DOI: 10.1109/ISVLSI.2002.1016866

  18. Wang A, Calhoun B, Chandrakasan A (2006) Sub-threshold design for ultra low-power systems. Springer, New York

    Google Scholar 

  19. Weste N, Harris D (2011) CMOS VLSI design: a circuits and systems perspective, 4th edn. Addison-Wesley, New York

    Google Scholar 

  20. Wikipedia Semiconductor device fabrication. URL http://en.wikipedia.org/wiki/Semiconductor_device_fabrication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reynders, N., Dehaene, W. (2015). Introduction. In: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-16136-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16136-5_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16135-8

  • Online ISBN: 978-3-319-16136-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics