Skip to main content

Closed-Loop Identification and Control of Inland Vessels

  • Chapter
Transport of Water versus Transport over Water

Part of the book series: Operations Research/Computer Science Interfaces Series ((ORCS,volume 58))

Abstract

Extensive research has been conducted on a navigation system for inland vessels at the University of Stuttgart and at the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg (Focus Max Planck Gesellschaft, Computer at the helm, http://www.mpg.de/942027). As part of this navigation system, a model-based track-keeping controller has been developed. A high performance controller is required because of the reduced space available on rivers and canals. The control structure consists of two components, a feedback and a feedforward block, where the former is provided by a linear quadratic gaussian controller. Both components require the ship dynamics model and thus, the parameter estimation of the underlying model is a key issue to achieve high performance. In this chapter, we firstly consider Monte Carlo simulations to generate data of the closed-loop system and then the parameters of a continuous-time steering dynamics model are identified. The parameter estimation problem is solved applying an instrumental variable method, which takes into account the control structure. Parameter identification using real closed-loop experiments is also considered. Additionally, we evaluate the experiments for parameter estimation through a sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson BDO, Moore JB. Optimal control: Linear quadratic methods. Englewood Cliffs: Prentice Hall; 1989.

    Google Scholar 

  2. Åström KJ, Källström CG. Identification of ship steering dynamics. Automatica. 1976;12:9–22.

    Article  Google Scholar 

  3. Bastogne T, Garnier H, Sibille P. A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process. Int J Control. 2001;74(2):118–32.

    Google Scholar 

  4. Bittner R. Modellbasierte Bahnführung von Binnenschiffen. Ph.D. dissertation, Otto von Guericke Universität Magdeburg (in preparation).

    Google Scholar 

  5. Bittner R, Gilles ED. Automatic track-keeping of inland vessels in flowing waterways. In: 4th international symposium on automatic control, Wismar, September 2005. Hochschule Wismar; 2005.

    Google Scholar 

  6. Bittner R, Driescher A, Gilles ED. Entwurf einer Vorsteuerung zur hochgenauen Bahnführung von Binnenschiffen. In: Wismarer Automatisierungssymposium, vol. 3, Wismar, 2002.

    Google Scholar 

  7. Bittner R, Driescher A, Gilles ED. Drift dynamics modeling for automatic track-keeping of inland vessels. In: Peshekhonov VG, editor. 10th Saint Petersburg international conference on integrated navigation systems, Saint Petersburg, May 2003. State Research Center of the Russian Federation “Elektropribor”; 2003. p. 218–27.

    Google Scholar 

  8. Blanke M, Knudsen M. Optimized experiment design for identification of marine systems. In: 14th IFAC world congress, Beijing, 1999.

    Google Scholar 

  9. Bolk S. Entwurf einer lqg-regelung zur bahnführung von binnenschiffen. Diplomarbeit, Universität Stuttgart, 2004.

    Google Scholar 

  10. Focus Max Planck Gesellschaft. Computer at the helm. http://www.mpg.de/942027.

  11. Fossen TI. Guidance and control of ocean vehicles. New York: Wiley; 1994.

    Google Scholar 

  12. Fossen TI. Marine control systems. Marine Cybernetics; 2002.

    Google Scholar 

  13. Garnier H, Gilson M, Zheng WX. A bias-eliminated least-squares method for continuous-time model identification of closed-loop systems. Int J Control. 2000;73(1):38–48.

    Article  Google Scholar 

  14. Gilson M, Garnier H. Continuous-time model identification of systems operating in closed-loop. In: 13th IFAC symposium on system identification, 2003.

    Google Scholar 

  15. Gilson M, Van den Hof P. On the relation between a bias-eliminated least-squares (bels) and an iv estimator in closed-loop identification. Automatica. 2001;37:1593–600.

    Article  Google Scholar 

  16. Gilson M, Van den Hof P. IV methods for closed-loop system identification. In: 13th IFAC symposium on system identification, 2003.

    Google Scholar 

  17. Gilson M, Van den Hof P. Instrumental variable methods for closed-loop system identification. Automatica. 2005;41:241–49.

    Article  Google Scholar 

  18. Gilson M, Garnier H, Young P, Van den Hof P. Instrumental variable methods for closed-loop continuous-time model identification. In: Garnier H, Wang L, editors. Identification of continuous-time models from sampled data. New York: Springer; 2008. p. 133–60.

    Chapter  Google Scholar 

  19. Gilson M, Garnier H, Young P, Van den Hof P. Optimal instrumental variable method for closed-loop identification. IET Control Theory Appl. 2011;5(10):1147–54.

    Article  Google Scholar 

  20. Gronarz A. Rechnerische Simulation der Schiffsbewegung beim Manövrieren unter besonderer Berücksichtigung der Abhängigkeit von der Wassertiefe. Ph.D. thesis, Gerhard-Mercator-Universität Gesamthochschule Duisburg, 1997. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5111/inhalt.htm.

  21. Herzer B. Die automatische bahnführung von schiffen mit nichtminimalphasiger dynamik. Ph.D. dissertation, Universität Stuttgart (in preparation).

    Google Scholar 

  22. Herzer B, Gilles ED. Disturbance estimation for feedforward control of inland vessels. In: 8th IFAC conference on control applications in marine systems, Rostock-Warnemünde, 2010.

    Google Scholar 

  23. Lachmeyer A, Herzer B, Gilles ED. Path planning for lock entering maneuvers using nonlinear programming. In: 8th IFAC conference on control applications in marine systems, Rostock-Warnemünde. IFAC; 2010.

    Google Scholar 

  24. Ljung L. System identification, theory for the user. 2nd ed. Englewood Cliffs: Prentice Hall; 1999.

    Google Scholar 

  25. Ljung L. Experiments with identification of continuous time models. In: 15th IFAC symposium of system identification, Saint-Malo, 2009.

    Google Scholar 

  26. Lutz A. Kollisionserkennung und -vermeidung auf Binnenwasserstraßen. Ph.D. thesis, Universität Stuttgart, 2011. http://elib.uni-stuttgart.de/opus/volltexte/2011/6399/.

  27. Lutz A, Gilles ED. Opportunities for Automated Inland Navigation. In: Konings R, Priemus H, Nijkamp P, editors. The future of automated freight transport: Concepts, design and implementation. Edward Elgar Publishing; 2005. p. 51–64.

    Google Scholar 

  28. Nomoto K, Taguchi T, Honda K, Hirano S. On the steering qualities of ships. Int Shipbuild Prog. 1957;4:354–70.

    Google Scholar 

  29. Padilla A, Yuz JI, Herzer B. Continuous-time system identification of the steering dynamics of a ship on a river. Int J Control. 2014 (to appear).

    Google Scholar 

  30. Rawlings JB, Ekerdt JG. Chemical reactor analysis and design fundamentals.​ Nob Hill Publishing; 2002.

    Google Scholar 

  31. Tóth R, Laurain V, Gilson M, Garnier H. Instrumental variable scheme for closed-loop lpv model identification. Automatica. 2012;48:2314–20.

    Article  Google Scholar 

  32. Wahl A. Einsatz optimaler Regelverfahren zur automatischen Bahnführung. Ph.D. thesis, Universität Stuttgart, 2001.

    Google Scholar 

  33. Young PC. Recursive estimation and time-series analysis: An introduction for the student and practitioner. Berlin: Springer; 2011.

    Book  Google Scholar 

  34. Young PC, Garnier H, Gilson M. Refined instrumental variable identification of continuous-time hybrid Box-Jenkins models. In: Garnier H, Wang L, editors. Identification of continuous-time models from sampled data. Berlin: Springer; 2008. p. 91–131.

    Chapter  Google Scholar 

  35. Zimmermann R. Repräsentation dynamischer Schiffsmodelle in einem Navigationssystem für die Binnenschiffahrt. Ph.D. thesis, Universität Stuttgart, 2000.

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor Ernst Dieter Gilles and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg-Germany where Arturo Padilla did part of the work presented in this chapter and from where the navigation data was obtained. The presented research on modeling and control was conducted by Ralph Bittner under the direction of Professor Gilles at the Max Planck Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Padilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Padilla, A., Bittner, R., Yuz, J.I. (2015). Closed-Loop Identification and Control of Inland Vessels. In: Ocampo-Martinez, C., Negenborn, R. (eds) Transport of Water versus Transport over Water. Operations Research/Computer Science Interfaces Series, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-16133-4_18

Download citation

Publish with us

Policies and ethics