Skip to main content

Enhancing Inland Navigation by Model Predictive Control of Water Levels: The Cuinchy-Fontinettes Case

  • Chapter
Transport of Water versus Transport over Water

Part of the book series: Operations Research/Computer Science Interfaces Series ((ORCS,volume 58))

Abstract

Navigation canals are used for transport purposes. In order to allow safe navigation the water level should be kept in a certain range around the Normal Navigation Level (NNL). The water level is disturbed by known and unknown inputs, like tributaries, municipal water flows, rain, etc. Some of these inputs can be used to control the water level. If the geometry requires it, canal reaches are connected by locks. The operation of these locks sometimes can disturb the water level, if the difference between the upstream and downstream water level is large. The objective is to minimize the disturbances caused by these lock operations on the water level in order to maintain the NNL. In this work the global management of the canal reach is discussed and an option to maintain the NNL by active control is introduced. Some inputs to the system, such as other confluences or gates on the side of the locks, can be controlled automatically to react to the disturbances caused by the lock operations using model predictive control to maintain the desired water level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almaz OA, Altiok T. Simulation modeling of the vessel traffic in Delaware River: Impact of deepening on port performance. Simul Model Pract Theory. 2012;22:146–165.

    Article  Google Scholar 

  2. Amin S, Litrico X, Sastry S, Bayen AM. Cyber security of water SCADA systems - Part I: Analysis and experimentation of stealthy deception attacks. IEEE Trans Control Syst Technol. 2013;21(5):1963–1970.

    Article  Google Scholar 

  3. Arkell BP, Darch GJC. Impact of climate change on London’s transport network. Proc ICE Munic Eng. 2006;159(4):231–237.

    Article  Google Scholar 

  4. Blesa J,Duviella E, Sayed-Mouchaweh M, Puig V, Chuquet K. Automatic control to improve the seaworthiness conditions in inland navigation networks. J Marit Res. 2012;9(3):61–66.

    Google Scholar 

  5. Boé J, Terray L, Martin E, Habets F. Projected changes in components of the hydrological cycle in French river basins during the 21st century. Water Resour Res. 2009;45(8):231–237.

    Google Scholar 

  6. Breemersch T, Heyndrickx C (2012) Effects of climate change on inland waterway transport networks. In: Second Nordic international conference on climate change adaptation, Helsinki, August 2012.

    Google Scholar 

  7. Brooke J, White I. Climate change mitigation and adaptation. implications for inland waterways in England and Wales. Technical report, Inland Waterways Advisory Council, 2009.

    Google Scholar 

  8. Bugarski V, Bac̆kalić T, Kuzmanov U. Fuzzy decision support system for ship lock control. Expert Syst Appl 2013;40(10):3953–3960.

    Google Scholar 

  9. Camacho EF, Bordons Alba C. Model predictive control. London: Springer; 1998.

    Google Scholar 

  10. Cernusko FL. State estimation for dynamic systems. Boca Raton: CRC Press; 1994.

    Google Scholar 

  11. Davies EGR, Simonovic SP. Global water resources modeling with an integrated model of the social–economic–environmental system. Adv Water Res. 2011;34(6):684–700.

    Article  Google Scholar 

  12. Ducharne A, Habets F, Pagé C, Sauquet E, Viennot P, Déqué M, Gascoin S, Hachour A, Martin E, Oudin L. Climate change impacts on water resources and hydrological extremes in northern France. In: Proceedings of XVIII international conference on water resources, Barcelona; 2010.

    Google Scholar 

  13. Duviella E. The GEPET-Eau project http://gepeteau.wordpress.com/bcf/. http://gepeteau.wordpress.com/bcf/, January 2014.

  14. Duviella E, Blesa J, Bako L, Bolea Y, Sayed-Mouchaweh M, Puig V, Chuquet K. Inland navigation channel model: Application to the Cuinchy-Fontinettes reach. In: The 10th IEEE international conference on networking, sensing and control, Paris, 10–12 April 2013.

    Google Scholar 

  15. Duviella E, Rajaoarisoa L, Blesa J, Chuquet K. Adaptive and predictive control architecture of inland navigation networks in a global change context: application to the Cuinchy-Fontinettes reach. In: IFAC conference on manufacturing modelling, management, and control, Saint Petersburg, 19–21 June 19–21.

    Google Scholar 

  16. European Parliament and Council of the European Union. Directive 2005/44/EC, 2005.

    Google Scholar 

  17. Fastenbauer M, Sattler M, Schilk G. River information services for commercial users in the inland waterway sector. In: LINDI 2007. International symposium on logistics and industrial informatics, 2007; 2007. pp. 31–36

    Google Scholar 

  18. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S. Mediterranean water resources in a global change scenario. Earth Sci Rev. 2011;105(3–4):121–139.

    Google Scholar 

  19. Graveline N, Loubier S, Gleyses G, Rinaudo J-D. Impact of farming on water resources: Assessing uncertainty with monte carlo simulations in a global change context. Agric Syst. 2012;108:29–41.

    Article  Google Scholar 

  20. Green M, Limebeer DJN. Linear robust control. DoverPublications.com, 2012.

  21. Horváth K. Model predictive control of resonance sensitive irrigation canals. PhD thesis, Technical University of Catalonia, Barcelona; 2013.

    Google Scholar 

  22. Horváth K, Duviella E, Blesa J, Rajaoarisoa L, Bolea Y, Puig V, Chuquet K. Gray-box model of inland navigation channel: Application to the Cuinchy-Fontinettes reach. J Intell Syst. 2014;23(2):183–199.

    Google Scholar 

  23. Horváth K, Petreczky M, Rajaoarisoa L, Duviella E, Chuquet K. MPC control of water level in a navigation canal the Cuinchy–Fontinettes case study. In: 13th European Control Conference (ECC), 2014.

    Google Scholar 

  24. Jonkeren O, Rietveld P, van Ommeren J, te Linde A. Climate change and economic consequences for inland waterway transport in europe. Reg Environ Change. 2013;14:953–965.

    Google Scholar 

  25. Krener AJ. Kalman-bucy and minimax filtering. IEEE Trans Autom Control. 1980;25(2):291–292

    Article  Google Scholar 

  26. Le Pocher O, Duviella E, Bako L, Chuquet K. Sensor fault detection of a real undershot/overshot gate based on physical and nonlinear black-box models. In: SAFEPROCESS - 8th IFAC international symposium on fault detection, supervision and safety for technical purposes, Mexico City, 29–31 August 2012.

    Google Scholar 

  27. Le Pocher O, Duviella E, Chuquet K. Sensor fault detection in a real hydraulic system using classification approach. In: 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Nordwijkerhout, 28–31 July 2011.

    Google Scholar 

  28. Litrico X, Fromion V. Analytical approximation of open-channel flow for controller design. App Math Model. 2004;28(7):677–695.

    Article  Google Scholar 

  29. Litrico X, Fromion V. Simplified modeling of irrigation canals for controller design. J Irrig Drain Eng. 2004;130(5):373–383.

    Article  Google Scholar 

  30. Litrico X, Georges D. Robust continuous-time and discrete-time flow control of a dam-river system. (i) modelling. Appl Math Model 1999;23(11):809–827.

    Google Scholar 

  31. Malaterre P-O, Baume JP. SIC 3.0, a simulation model for canal automation design. In: Mokhlisse A, editor. International workshop on regulation of irrigation canals: State of art of research and applications, vol. I. L.A.A.A.-C.N.R.S.; 1997. pp. 68–75.

    Google Scholar 

  32. Mallidis I, Dekker R, Vlachos D. The impact of greening on supply chain design and cost: a case for a developing region. J Transp Geogr. 2012;22:118–128.

    Article  Google Scholar 

  33. MATLAB. version 7.10.0 (R2010a). Natick: The MathWorks Inc.; 2010.

    Google Scholar 

  34. Mihic S, Golusin M, Mihajlovic M. Policy and promotion of sustainable inland waterway transport in Europe – Danube River. Renew Sustain Energy Rev. 2011;15(4):1801–1809.

    Article  Google Scholar 

  35. Millerd F. Global climate change and great lakes international shipping. Technical report, Wilfrid Laurier University, Waterloo, Ontario; 2007.

    Google Scholar 

  36. Murray SJ, Foster PN, Prentice IC. Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J Hydrol. 2012;448–449:14–29.

    Article  Google Scholar 

  37. Negenborn RR, van Overloop P-J, Keviczky T, De Schutter B. Distributed model predictive control of irrigation canals. Netw Heterog Media. 2009;4(2):359–380.

    Article  Google Scholar 

  38. Ocampo-Martinez C. Model predictive control of wastewater systems. Advances in industrial control. London: Springer; 2010.

    Book  Google Scholar 

  39. Puig V, Romera J, Quevedo J, Cardona CM, Salterain A, Ayesa E, Irizar I, Castro A, Lujan M, Charbonnaud P, Chiron P, Trouvat J-L. Optimal predictive control of water transport systems: Arrêt-Darré/Arros case study. Water Sci Technol. 2009;60(8):2125–2133.

    Article  Google Scholar 

  40. Schuurmans J. Open-channel flow model approximation for controller design. Appl Math Model. 1995;19(9):525–530.

    Article  Google Scholar 

  41. Schuurmans J. Control of water levels in open channels. PhD thesis, Delft University of Technology, Delft; 1997.

    Google Scholar 

  42. ten Broeke IAA, Willems CPM, Glansdorp CC. River information services: a joint European effort to enhance safety and usability of the inland waterway. In: Intelligent transportation systems, 2001. Proceedings. 2001 IEEE; 2001. pp. 1108–1115.

    Google Scholar 

  43. The Ministry of Ecology, Sustainable Development and Energy, France. Vigicrues: Information sur la vigilance “crues”. http://www.vigicrues.gouv.fr/, 1999.

  44. M. Xu, P.J. van Overloop, N.C. van de Giesen, On the study of control effectiveness and computational efficiency of reduced Saint-Venant model in model predictive control of open channel flow. Adv Water Resour 2011;34(2):282–290.

    Article  Google Scholar 

  45. van Overloop P-J. Model predictive control on open water systems. PhD thesis, Delft University of Technology, Delft; 2006.

    Google Scholar 

  46. van Overloop, P., Clemmens, A., Strand, R., Wagemaker, R., and Bautista, E. Real-time implementation of model predictive control on Maricopa-Stanfield irrigation and drainage district’s WM canal. J Irrig Drain Eng. 2010;136(11):747–756.

    Article  Google Scholar 

  47. van Overloop P-J, Bombois X. Identification of properties of open water channels for controller design. In: Proceedings of the 16th IFAC symposium on system identification; 2012. pp. 1019–1024.

    Google Scholar 

  48. van Overloop P-J, Miltenburg IJ, Bombois X, Clemmens AJ, Strand R, van de Giesen N. Identification of resonance waves in open water channels. Control Eng Pract. 2010;18(8):863–872.

    Google Scholar 

  49. van Overloop P-J, Negenborn RR, De Schutter B, van de Giesen NC. Predictive control for national water flow optimization in The Netherlands. In: Negenborn RR, Lukszo Z, Hellendoorn H, editors. Intelligent infrastructures. Intelligent systems, control and automation: Science and engineering, chapter 17, vol. 42. Dordrecht: Springer; 2010. pp. 439–461.

    Google Scholar 

  50. van Overloop P-J, Weijs S, Dijkstra S. Multiple model predictive control on a drainage canal system. Control Eng Pract. 2008;16(5):531–540.

    Article  Google Scholar 

  51. Wang S, Kang S, Zhang L, Li F. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrol Process. 2008;22(14):2502–2510.

    Article  Google Scholar 

  52. White I. Report for the inland waterways advisory council information and communication technology for the UK’s inland waterways. Technical Report MSU-CSE-00-2, Inland Waterways Advisory Council Information and Communication Technology, 2008.

    Google Scholar 

Download references

Acknowledgements

This work is a contribution to the GEPET-Eau project which is granted by the French ministry MEDDE—GICC, the French institution ORNERC and the DGITM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horváth, K., Rajaoarisoa, L., Duviella, E., Blesa, J., Petreczky, M., Chuquet, K. (2015). Enhancing Inland Navigation by Model Predictive Control of Water Levels: The Cuinchy-Fontinettes Case. In: Ocampo-Martinez, C., Negenborn, R. (eds) Transport of Water versus Transport over Water. Operations Research/Computer Science Interfaces Series, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-16133-4_12

Download citation

Publish with us

Policies and ethics