Skip to main content

An Introduction to Geometric Gibbs Theory

  • Conference paper
Book cover Dynamics, Games and Science

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 1))

  • 822 Accesses

Abstract

This is an article I wrote for Dynamics, Games, and Science. In Dynamics, Game, and Science, one of the most important equilibrium states is a Gibbs state. The deformation of a Gibbs state becomes an important subject in these areas. An appropriate metric on the space of underlying dynamical systems is going to be very helpful in the study of deformation. The Teichmüller metric becomes a natural choice. The Teichmüller metric, just like the hyperbolic metric on the open unit disk, makes the space of underlying dynamical systems a complete space. The Teichmüller metric precisely measures the change of the eigenvalues at all periodic points which are essential data needed to obtain the Gibbs state for a given dynamical system. In this article, I will introduce the Teichmüller metric and, subsequently, a generalization of Gibbs theory which we call geometric Gibbs theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings. Mathematical Studies, vol. 10. D. Van Nostrand Co. Inc., Toronto/New York/London (1966)

    Google Scholar 

  2. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin (1975)

    MATH  Google Scholar 

  3. Cui, G., Jiang, Y., Quas, A.: Scaling functions, g-measures, and Teichmüller spaces of circle endomorphisms. Discrete Contin. Dyn. Syst. 5(3), 534–552 (1999)

    MathSciNet  Google Scholar 

  4. Cui, G., Gardiner, F., Jiang, Y.: Scaling functions for circle endomorphisms. Contemp. Math. (AMS Series) 355, 147–163 (2004)

    Google Scholar 

  5. Gardiner, F., Jiang, Y.: Asymptotically affine and asymptotically conformal circle endomorphisms. In: Fujikawa, E. (ed.) Infinite Dimensional Teichmüller Spaces and Moduli Spaces. RIMS Kôkyûroku Bessatsu, vol. B17, pp. 37–53 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Gardiner, F., Jiang, Y.: Circle endomorphisms, dual circles and Thompson’s group. Contemp. Math. (AMS) 573, 99–118 (2012)

    Google Scholar 

  7. Gardiner, F., Sullivan, D.: Symmetric and quasisymmetric structures on a closed curve. Am. J. Math. 114(4), 683–736 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, Y., Jiang, Y., Wang, Z.: Martingales for quasisymmetric systems and complex manifold structures. Ann. Acad. Sci. Fenn. Math. 38, 1–26 (2013)

    MathSciNet  Google Scholar 

  9. Jiang, Y.: Renormalization and Geometry in One-Dimensional and Complex Dynamics. Advanced Series in Nonlinear Dynamics, vol. 10, pp. xvi+309. World Scientific, River Edge (1996)

    Google Scholar 

  10. Jiang, Y.: A proof of existence and simplicity of a maximal eigenvalue for Ruelle-Perron-Frobenius operators. Lett. Math. Phys. 48, 211–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Y.: Metric invariants in dynamical systems. J. Dyn. Differ. Equ. 17(1), 51–71 (2005)

    Article  MATH  Google Scholar 

  12. Jiang, Y.: On a question of Katok in one-dimensional case. Discrete Contin. Dyn. Syst. 24(4), 1209–1213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, Y.: Symmetric invariant measures. Contemp. Math. AMS 575, 211–218 (2012)

    Article  Google Scholar 

  14. Jiang, Y.: Function model of the Teichmüller space of a closed hyperbolic Riemann surface [arXiv0810.4969v3] (2009)

    Google Scholar 

  15. Jiang, Y.: Geomtric Gibbs theory. Rewritten version of Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials (arXiv0804.3104v3, 2010)

    Google Scholar 

  16. Jiang, Y., Ruelle, D.: Analyticity of the susceptibility function for unimodal Markovian maps of the interval. Nonlinearity 18, 2447–2453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keane, M.: Strongly mixing g-measures. Invent. Math. 16, 309–324 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ledrappier, F.: Principe variationnel et systèmes dynamiques symboliques. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30, 185–202 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lehto, O.: Univalent Functions and Teichmüller Spaces. Springer, New York/Berlin (1987)

    Book  MATH  Google Scholar 

  20. Ruelle, D.: Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9, 267–278 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruelle, D.: A measure associated with axiom A attractors. Am. J. Math. 98, 619–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruelle, D.: Differentiating the absolutely continuous invariant measure of an interval map f with respect to f. Commun. Math. Phys. 258, 445–453 (2005)

    Google Scholar 

  23. Sinai, Y.G.: Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2(1), 64–89 (1968)

    Article  MathSciNet  Google Scholar 

  24. Sinai, Y.G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4), 21–69 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Walters, P.: Ruelle’s operator theorem and g-measures. Trans. Am. Math. Soc. 214, 375–387 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my student John Adamski who read the initial version of this manuscript very carefully and found many typos and made very good suggestions to improve the exposition of this paper. This research is partially supported by the collaboration grant (#199837) from the Simons Foundation, the CUNY collaborative incentive research grants (#1861 and #2013), and awards from PSC-CUNY. This research is also partially supported by the collaboration grant (#11171121) from the NSF of China and a collaboration grant from Academy of Mathematics and Systems Science and the Morningside Center of Mathematics at the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, Y. (2015). An Introduction to Geometric Gibbs Theory. In: Bourguignon, JP., Jeltsch, R., Pinto, A., Viana, M. (eds) Dynamics, Games and Science. CIM Series in Mathematical Sciences, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16118-1_18

Download citation

Publish with us

Policies and ethics