Skip to main content

Core-Periphery Models for Graphs Based on their δ-Hyperbolicity: An Example Using Biological Networks

  • Conference paper
Book cover Complex Networks VI

Part of the book series: Studies in Computational Intelligence ((SCI,volume 597))

Abstract

Hyperbolicity is a global property of graphs that measures how close their structures are to trees in terms of their distances. It embeds multiple properties that facilitate solving several problems that found to be hard in the general graph form. In this paper, we investigate the hyperbolicity of graphs not only by considering Gromov’s notion of δ-hyperbolicity but also by analyzing its relationship to other graph’s parameters. This new perspective allows us to classify graphs with respect to their hyperbolicity, and to show that many biological networks are hyperbolic. Then we introduce the eccentricity-based bending property which we exploit to identify the core vertices of a graph by proposing two models: the Maximum-Peak model and the Minimum Cover Set model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.kent.edu/~dragan/FullVersionComplexNet.pdf

  2. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an empirical study. arXiv preprint 3364(1402) (2014)

    Google Scholar 

  3. Adcock, A., Sullivan, B., Mahoney, M.: Tree-like structure in large social and information networks. In: ICDM 2013 (2013)

    Google Scholar 

  4. Albert, R., DasGupta, B., Mobasheri, N.: Topological implications of negative curvature for biological and social networks. Physical Review E 89(3) (2014)

    Google Scholar 

  5. Baryshnikov, Y., Tucci, G.: Asymptotic traffic flow in a hyperbolic network. In: ISCCSP (2012)

    Google Scholar 

  6. Borgatti, S., Everett, M.: Models of core/periphery structures. Social Networks 21(4), 375–395 (2000)

    Article  Google Scholar 

  7. Bu, D., Zhao, Y., et al.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31(9), 2443–2450 (2003)

    Article  Google Scholar 

  8. Butland, G., Manuel, J., et al.: Interaction network containing conserved and essential protein complexes in escherichia coli. Nature 7025(433), 531–537 (2005)

    Article  Google Scholar 

  9. Chepoi, V., Dragan, F., et al.: Diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs. In: SoCG 2008 (2008)

    Google Scholar 

  10. Chepoi, V., Dragan, F., et al.: Additive spanners and distance and routing labeling schemes for hyperbolic graphs. Algorithmica 62(3), 713–732 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Christian, V.M., Krause, R., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 6887(417), 309–403 (2002)

    Google Scholar 

  12. Cvetkovski, A., Crovella, M.: Hyperbolic embedding and routing for dynamic graphs. In: INFOCOM 2009 (2009)

    Google Scholar 

  13. Da, S., Rosa, M., et al.: Centrality, network capacity, and modularity as parameters to analyze the core-periphery structure in metabolic networks. Proceedings of the IEEE 96, 1411–1420 (2008)

    Article  Google Scholar 

  14. de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In: 10th IEEE International Symposium, NCA, pp. 25–32. IEEE (2011)

    Google Scholar 

  15. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review 72(2) (2005)

    Google Scholar 

  16. Fell, D., Wagner, A.: The small world of metabolism. Nature Biotechnology 18(11), 1121–1122 (2000)

    Article  Google Scholar 

  17. Gromov, M.: Hyperbolic Groups. Springer, New York (1987)

    Google Scholar 

  18. Holme, P.: Core-periphery organization of complex networks. Physical Review E 72(4) (2005)

    Google Scholar 

  19. Jeong, H., Mason, S., et al.: Lethality and centrality in protein networks. Nature 6833(411), 41–42 (2001)

    Article  Google Scholar 

  20. Ma, H., Zeng, A.-P.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2), 270–277 (2003)

    Article  Google Scholar 

  21. Ma, H.-W., Zeng, A.-P.: The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11), 1423–1430 (2003)

    Article  Google Scholar 

  22. Milo, R., Shen-Orr, S., et al.: Network motifs: simple building blocks of complex networks. Science 5594(298), 824–827 (2002)

    Article  Google Scholar 

  23. Modha, D., Singh, R.: Network architecture of the long-distance pathways in the macaque brain. Proceedings of NAS 107

    Google Scholar 

  24. Narayan, O., Saniee, I.: The large scale curvature of networks. Physical Review E 84(6) (2011)

    Google Scholar 

  25. Négyessy, L., Nepusz, T., et al.: Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis. European Journal of Neuroscience 23(7), 1919–1930 (2006)

    Article  Google Scholar 

  26. Rain, J.-C., Selig, L., et al.: The protein-protein interaction map of helicobacter pylori. Nature 6817(409), 211–215 (2001)

    Article  Google Scholar 

  27. Rodríguez, J., Sigarreta, J., et al.: On the hyperbolicity constant in graphs. Discrete Mathematics 311(4) (2011)

    Google Scholar 

  28. Shavitt, Y., Tankel, T.: On the curvature of the internet and its usage for overlay construction and distance estimation. In: INFOCOM 2004. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Alrasheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alrasheed, H., Dragan, F.F. (2015). Core-Periphery Models for Graphs Based on their δ-Hyperbolicity: An Example Using Biological Networks. In: Mangioni, G., Simini, F., Uzzo, S., Wang, D. (eds) Complex Networks VI. Studies in Computational Intelligence, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-319-16112-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16112-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16111-2

  • Online ISBN: 978-3-319-16112-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics