Skip to main content

Analysis of the Robustness of Degree Centrality against Random Errors in Graphs

  • Conference paper

Part of the book series: Studies in Computational Intelligence ((SCI,volume 597))

Abstract

Research on network analysis, which is used to analyze large-scale and complex networks such as social networks, protein networks, and brain function networks, has been actively pursued. Typically, the networks used for network analyses will contain multiple errors because it is not easy to accurately and completely identify the nodes to be analyzed and the appropriate relationships among them. In this paper, we analyze the robustness of centrality measure, which is widely used in network analyses, against missing nodes, missing links, and false links. We focus on the stability of node rankings based on degree centrality, and derive Top m and Overlap m , which evaluate the robustness of node rankings. Through extensive simulations, we show the validity of our analysis, and suggest that our model can be used to analyze the robustness of not only degree centrality but also other types of centrality measures. Moreover, by using our analytical models, we examine the robustness of degree centrality against random errors in graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, B., Newman, M.E.J.: Friendship networks and social status. Network Science 1(01), 16–30 (2013)

    Article  Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Batallas, D., Yassine, A.: Information leaders in product development organizational networks: Social network analysis of the design structure matrix. IEEE Transactions on Engineering Management 53(4), 570–582 (2006)

    Article  Google Scholar 

  4. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology 2(1), 113–120 (1972)

    Article  Google Scholar 

  5. Borgatti, S.: Identifying sets of key players in a social network. Computational & Mathematical Organization Theory 12(1), 21–34 (2006)

    Article  MATH  Google Scholar 

  6. Borgatti, S., Mehra, A., Brass, D., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  7. Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Social Networks 28(2), 124–136 (2006)

    Article  Google Scholar 

  8. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  9. Costenbader, E., Valente, T.: The stability of centrality measures when networks are sampled. Social Networks 25(4), 283–307 (2003)

    Article  Google Scholar 

  10. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  11. Freeman, L.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  Google Scholar 

  12. Ghoshal, G., Barabási, A.: Ranking stability and super-stable nodes in complex networks. Nature Communications 2(394), 1–7 (2011)

    Google Scholar 

  13. Ishino, M., Tsugawa, S., Ohsaki, H.: On the robustness of centrality measures against link weight quantization in real weighted social networks. In: Proceedings of the the 2nd International Workshop on Ambient Information Technologies (AMBIT 2013), pp. 25–28 (March 2013)

    Google Scholar 

  14. Kim, P., Jeong, H.: Reliability of rank order in sampled networks. The European Physical Journal B-Condensed Matter and Complex Systems 55(1), 109–114 (2007)

    Article  Google Scholar 

  15. Lee, S.H., Kim, P.J., Jeong, H.: Statistical properties of sampled networks. Physical Review E 73(1), 016102 (2006)

    Article  Google Scholar 

  16. Frantz, T.L., Cataldo, M., Carley, K.: Robustness of centrality measures under uncertainty: Examining the role of network topology. Computational and Mathematical Organization Theory 15(4), 303–328 (2009)

    Article  Google Scholar 

  17. Matsumoto, Y., Tsugawa, S., Ohsaki, H., Imase, M.: Robustness of centrality measures against link weight quantization in social network analysis. In: Proceedings of the 4th Annual Workshop on Simplifying Complex Networks for Practitioners (SIMPLEX 2012), pp. 49–54 (April 2012)

    Google Scholar 

  18. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Physical Review E 64(2), 026118 (2001)

    Article  Google Scholar 

  19. Platig, J., Ott, E., Girvan, M.: Robustness of network measures to link errors. Physical Review E 88(6), 062812 (2013)

    Article  Google Scholar 

  20. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  21. Tsugawa, S., Ohsaki, H.: Emergence of fractals in social networks: Analysis of community structure and interaction locality. In: Proceedings of the 38th Annual IEEE International Computers, Software, and Applications Conference (COMPSAC 2014), pp. 568–575 (July 2014)

    Google Scholar 

  22. Watts, D.J.: A twenty-first century science. Nature 445(7127), 489 (2007)

    Article  Google Scholar 

  23. Yu, H., Braun, P., Yıldırım, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., et al.: High-quality binary protein interaction map of the yeast interactome network. Science 322(5898), 104–110 (2008)

    Article  Google Scholar 

  24. Žnidaršič, A., Ferligoj, A., Doreian, P.: Non-response in social networks: The impact of different non-response treatments on the stability of blockmodels. Social Networks 34(4), 438–450 (2012)

    Article  Google Scholar 

  25. Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., Milham, M.P.: Network centrality in the human functional connectome. Cerebral Cortex 22(8), 1862–1875 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Tsugawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tsugawa, S., Ohsaki, H. (2015). Analysis of the Robustness of Degree Centrality against Random Errors in Graphs. In: Mangioni, G., Simini, F., Uzzo, S., Wang, D. (eds) Complex Networks VI. Studies in Computational Intelligence, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-319-16112-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16112-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16111-2

  • Online ISBN: 978-3-319-16112-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics