Advertisement

Speeding up Static Probabilistic Timing Analysis

  • Suzana MilutinovicEmail author
  • Jaume Abella
  • Damien Hardy
  • Eduardo Quiñones
  • Isabelle Puaut
  • Francisco J. Cazorla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9017)

Abstract

Probabilistic Timing Analysis (PTA) has emerged recently to derive trustworthy and tight WCET estimates. Computational costs due to the use of the mathematical operator called convolution used by SPTA – the static variant of PTA – and also deployed in many domains including signal and image processing, jeopardize the scalability of SPTA to real-size programs. We evaluate, qualitatively and quantitatively, optimizations to reduce convlution’s computational costs when it is applied to SPTA. We showthat SPTA specific optimizations provide the largest execution time reductions, at the cost of a small loss of precision.

Keywords

Execution Time Decimal Digit Execution Time Reduction WCET Analysis Spanish National Research Council 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment. ARP4761 (2001)Google Scholar
  2. 2.
    Altmeyer, S., Davis, R.I.: On the correctness, optimality and precision of static probabilistic timing analysis. In: DATE (2014)Google Scholar
  3. 3.
    Bernat, G., et al.: WCET analysis of probabilistic hard real-time systems. In: RTSS (2002)Google Scholar
  4. 4.
    Breitzman, A.F.: Automatic Derivation and Implementation of Fast Convolution Algorithms. PhD thesis, Drexel University (2003)Google Scholar
  5. 5.
    Cazorla, F.J., et al.: PROARTIS: Probabilistically analyzable real-time systems. ACM Transactions on Embedded Computing Systems 12(2s) (2013)Google Scholar
  6. 6.
    Cazorla, F.J., et al.: Upper-bounding program execution time with extreme value theory. In: WCET Workshop (2013)Google Scholar
  7. 7.
    Cucu, L., et al.: Measurement-based probabilistic timing analysis for multi-path programs. In: ECRTS (2012)Google Scholar
  8. 8.
    Davis, R.I., et al.: Analysis of probabilistic cache related pre-emption delays. In: ECRTS (2013)Google Scholar
  9. 9.
    Hansen, J., et al.: Statistical-based WCET estimation and validation. In: WCET Workshop (2009)Google Scholar
  10. 10.
    Kosmidis, L., Quiñones, E., Abella, J., Vardanega, T., Broster, I., Cazorla, F.J.: Measurement-based probabilistic timing analysis and its impact on processor architecture. In: 17th DSD (2014)Google Scholar
  11. 11.
    Kosmidis, L., et al.: A cache design for probabilistically analysable real-time systems. In: DATE (2013)Google Scholar
  12. 12.
    Maxim, D., Houston, M., Santinelli, L., Bernat, G., Davis, R.I., Cucu, L.: Re-sampling for statistical timing analysis of real-time systems. In: RTNS (2012)Google Scholar
  13. 13.
    Quinones, E., et al.: Using randomized caches in probabilistic real-time systems. In: ECRTS (2009)Google Scholar
  14. 14.
    Reineke, J.: Randomized caches considered harmful in hard real-time systems. Leibniz Transactions on Embedded Systems 1(1) (2014)Google Scholar
  15. 15.
    Turner, C.J., et al.: Parallel implementations of convolution and moments algorithms on a multi-transputer system. Microprocessors and Microsystems 19(5) (1995)Google Scholar
  16. 16.
    Wartel, F., et al.: Measurement-based probabilistic timing analysis: Lessons from an integrated-modular avionics case study. In: SIES (2013)Google Scholar
  17. 17.
    Yip, H.-M., et al.: An efficient parallel algorithm for computing the gaussian convolution of multi-dimensional image data. J. Supercomput. 14(3) (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Suzana Milutinovic
    • 1
    • 2
    Email author
  • Jaume Abella
    • 2
  • Damien Hardy
    • 3
  • Eduardo Quiñones
    • 2
  • Isabelle Puaut
    • 3
  • Francisco J. Cazorla
    • 2
    • 4
  1. 1.Universitat Politecnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Barcelona Supercomputing Center (BSC-CNS)BarcelonaSpain
  3. 3.IRISARennesFrance
  4. 4.Spanish National Research Council (IIIA-CSIC)BarcelonaSpain

Personalised recommendations