A Synthesizable Temperature Sensor on FPGA Using DSP-Slices for Reduced Calibration Overhead and Improved Stability

  • Christopher BartelsEmail author
  • Chao Zhang
  • Guillermo Payá-Vayá
  • Holger Blume
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9017)


Current research on synthesizable temperature sensors, using the reconfigurable logic of the FPGA to measure temperature anywhere on the FPGA, ueses an oscillating, temperature dependent route on the FPGA. These LUT-based routes require a complex calibration process and have a large footprint on the die. The proposed synthesizable temperature sensor uses DSP-slices to reduce the calibration overhead and the footprint as well. The sensor can achieve a resolution of up to 0.12\(^\circ \)C, depending on configuration. A sample rate of up to 1040 samples per second is feasible, in the fastest configuration. The sensor was evaluated and compared. The sensor is more stable, easier to calibrate and features a smaller footprint. This allows a higher density of temperature sensors than before. It uses 45 FF, 69 LUTs, 6 Shift-Registers (SRL32) and 4 DSP-slices to realize a fully digital, synthesizable temperature sensor, including a calibration circuit, a reading circuit and a buffer structure to save multiple data samples.


FPGA Temperature sensors Routing LUTs DSP-slices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paul Brokaw, A.: A simpe three-terminal ic bandgap reference. IEEE Journal of Solid-State Circuits (1974)Google Scholar
  2. 2.
    Xilinx: ML605 Hardware User Guide, October 2012Google Scholar
  3. 3.
    Chen, P., Shie, M.-C., Zheng, Z.-Y., Zheng, Z.-F., Chu, C.-Y.: A fully digital time-domain smart temperature sensor realized with 140 fpga logic elements. IEEE Transactions On Circuits And Systems (2007)Google Scholar
  4. 4.
    Ha, Y., Veeravalli, B., Syed, R., Zhao, W.: A low overhead temperature sensor for self-aware reconfigurable platforms. In: Self-Awareness in Reconfigurable Computing 2012 (2012)Google Scholar
  5. 5.
    Chen, P., Chen, S.-C., Shen, Y.-S., Peng, Y.-J.: All-digital time-domain smart temperature sensor with an inter-batch inaccuracy of -0.7c -+0.6c after one-point calibration. IEEE Transactions On Circuits And Systems (2011)Google Scholar
  6. 6.
    Lopez-Buedo, S., Garrido, J., Boemo, E.: Dynamically inserting, operating, and eliminating thermal sensors of fpga-based systems. IEEE Transactions On Components And Packaging Technologies (2010)Google Scholar
  7. 7.
    Boemo, E., Lopez-Buedo, S.: Thermal monitoring on FPGAs using ring-oscillators. In: Luk, W., Cheung, P.Y.K., Glesner, M. (eds.) FPL 1997. LNCS, vol. 1304, pp. 69–78. Springer, Heidelberg (1997) Google Scholar
  8. 8.
    León Franco, J.J., Boemo, E.: Ring oscillators as thermal sensors in fpgas: experiments in low voltage. In: Programmable Logic Conference (SPL) (2010)Google Scholar
  9. 9.
    Zick, K.M., Hayes, J.P.: On-line sensing for healthier fpga-systems. In: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays (2010)Google Scholar
  10. 10.
    Xilinx: Virtex 6 FPGA Configuration User Guide, November 2013Google Scholar
  11. 11.
    Xilinx: Virtex 6 FPGA DSP48E1 Slice User Guide, February 2011Google Scholar
  12. 12.
    Xilinx: Virtex 6 FPGA Data Sheet: DC and Switching Characteristics, May 2014Google Scholar
  13. 13.
    Xilinx: Virtex 6 FPGA System Monitor User Guide, June 2010Google Scholar
  14. 14.
    Texas Instruments: USB Interface Adapter Evaluation Module User’s Guide, August 2006Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christopher Bartels
    • 1
    Email author
  • Chao Zhang
    • 1
  • Guillermo Payá-Vayá
    • 1
  • Holger Blume
    • 1
  1. 1.Institute of Microelectronic SystemsLeibniz University of HanoverHanoverGermany

Personalised recommendations