Skip to main content

Improving Reliability and Endurance Using End-to-End Trust in Distributed Low-Power Sensor Networks

  • Conference paper
  • First Online:
Architecture of Computing Systems – ARCS 2015 (ARCS 2015)

Abstract

Wireless Sensor Networks are characterised by a large amount of participating nodes. Considering attackers and malicious elements within such a network poses challenges for the network protocols in operation. Based on concepts from the Organic Computing domain, this paper introduces a novel approach to introduce reliability measures and establish End-to-End trust in WSNs. We evaluate our concepts using simulation by adding nodes which try to attack the system. The results show that these malicious nodes can be quickly isolated with low additional effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busching, F., Pottner, W., Brokelmann, D., Von Zengen, G., Hartung, R., Hinz, K., Wolf, L.: A demonstrator of the GINSENG-approach to performance and closed loop control in WSNs. In: 2012 Ninth International Conference on Networked Sensing Systems (INSS), pp. 1–2 (June 2012)

    Google Scholar 

  2. Büsching, F., Kulau, U., Wolf, L.: Architecture and evaluation of inga - an inexpensive node for general applications. In: 2012 IEEE Sensors, pp. 842–845. IEEE, Taipei, Taiwan (oct (2012)

    Google Scholar 

  3. Busching, F., Bottazzi, M., Pottner, W.B., Wolf, L.: DT-WBAN: Disruption tolerant wireless body area networks in healthcare applications. In: the International Workshop on e-Health Pervasive Wireless Applications and Services (eHPWAS 2013). Lyon, France (October 2013)

    Google Scholar 

  4. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model, vol. 18. John Wiley & Sons (2010)

    Google Scholar 

  5. Clausen, T., Jacquet, P.: RFC3626 Optimized Link State Routing Protocol (OLSR) (2003)

    Google Scholar 

  6. Couto, D.S.J.D.: High-Throughput Routing for Multi-Hop Wireless Networks. Ph.D. thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  7. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny networked sensors. In: LCN 20’04 Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, pp. 455–462. IEEE Computer Society, Washington, DC, USA (2004)

    Google Scholar 

  8. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based Framework for High Integrity Sensor Networks. ACM Trans. Sen. Netw. 4(3), 15:1–15:37 (2008)

    Article  Google Scholar 

  9. Gnawali, O., Levis, P.: The Minimum Rank with Hysteresis Objective Function. RFC 6719 (Proposed Standard) (September 2012). http://www.ietf.org/rfc/rfc6719.txt

  10. Guo, C., Zhong, L.C., Rabaey, J.: Low power distributed MAC for ad hoc sensor radio networks. In: GLOBECOM 2001 IEEE Global Telecommunications Conference, vol. 5, pp. 2944–2948 (2001)

    Google Scholar 

  11. IEEE: IEEE Standard for Local and metropolitan area networks- Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) (2011)

    Google Scholar 

  12. Lazarescu, M.: Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(1), 45–54 (2013)

    Article  Google Scholar 

  13. Leligou, N., Sarakis, L., Trakadas, P., Gay, V., Georouleas, K.: Design Principles of Trust-aware Routing Protocol supporting Virtualization (2011), Deliverable D4.1

    Google Scholar 

  14. O’Donovan, T., Brown, J., Büsching, F., Cardoso, A., Cecelio, J., do O, J., Furtado, P., Gil, P., Jugel, A., Pöttner, W.B., Roedig, U., sa Silva, J., Silva, R., Sreenan, C., Vassiliou, V., T. Voigt and, L.W., Zinonos, Z.: The GINSENG System for Wireless Monitoring and Control: Design and Deployment Experiences. ACM Transactions on Sensor Networks (TOSN) 10(1) (November 2013)

    Google Scholar 

  15. Papadopoulos, G., Beaudaux, J., Gallais, A., Noel, T.: T-AAD: Lightweight traffic auto-adaptations for low-power MAC protocols. In: 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), pp. 79–86 (June 2014)

    Google Scholar 

  16. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Proceedings of the WMCSA 1999 Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (February 1999)

    Google Scholar 

  17. Thubert, P.: Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL). RFC 6552 (Proposed Standard) (March 2012). http://www.ietf.org/rfc/rfc6552.txt

  18. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., Richter, U., Schmeck, H.: Observation and Control of Organic Systems. In: Organic Computing - A Paradigm Shift for Complex Systems, pp. 325–338. Birkhäuser (2011)

    Google Scholar 

  19. Wang, Y., Vassileva, J.: Trust-Based Community Formation in Peer-to-Peer File Sharing Networks. In: Proc. on Web Intelligence, pp. 341–348 (September 2004)

    Google Scholar 

  20. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550 (Proposed Standard) (March 2012). http://www.ietf.org/rfc/rfc6550.txt

  21. Zhan, G., Shi, W., Deng, J.: Design and Implementation of TARF: A Trust-Aware Routing Framework for WSNs. IEEE Transactions on Dependable and Secure Computing 9(2), 184–197 (2012)

    Article  Google Scholar 

  22. Österlind, F.: A Sensor Network Simulator for the Contiki OS. Tech. rep, Swedish Institute of Computer Science (May 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kantert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kantert, J. et al. (2015). Improving Reliability and Endurance Using End-to-End Trust in Distributed Low-Power Sensor Networks. In: Pinho, L., Karl, W., Cohen, A., Brinkschulte, U. (eds) Architecture of Computing Systems – ARCS 2015. ARCS 2015. Lecture Notes in Computer Science(), vol 9017. Springer, Cham. https://doi.org/10.1007/978-3-319-16086-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16086-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16085-6

  • Online ISBN: 978-3-319-16086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics