Skip to main content

Regulation of the Chaperone Function of Small Hsps

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that represent a first line of defense against proteotoxic stress and prevent the aggregation of unfolding proteins. The most striking feature of sHsps is their ability to form higher-order oligomers. Within the last decade, especially the dynamic ensembles with a broad distribution of different oligomers, the diversity of assembly types and the regulation of their activity were in the focus of research. Interestingly, the activity of sHsps directly correlates to these structural features as it is regulated by changes in the composition of the ensembles. In this chapter, we describe the mechanisms known so far which are responsible for the activation of chaperone function and their linkage to changes in the structure of sHsps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrman E, Gustavsson N, Hultschig C, Boelens WC, Emanuelsson CS (2007a) Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 11:659–666

    PubMed  Google Scholar 

  • Ahrman E, Lambert W, Aquilina JA, Robinson CV, Emanuelsson CS (2007b) Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci 16:1464–1478

    PubMed Central  PubMed  Google Scholar 

  • Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV (2005) Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J Biol Chem 280:14485–14491

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    PubMed  Google Scholar 

  • Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587:1959–1969

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2013) Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperth 29:409–422

    CAS  Google Scholar 

  • Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    CAS  PubMed  Google Scholar 

  • Baldwin AJ, Lioe H, Robinson CV, Kay LE, Benesch JL (2011) alphaB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J Mol Biol 413:297–309

    CAS  PubMed  Google Scholar 

  • Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411:110–122

    CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575

    CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    CAS  PubMed  Google Scholar 

  • Basha E, Jones C, Wysocki V, Vierling E (2010) Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 285:11489–11497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E (2013) An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J Mol Biol 425:1683–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benesch JL, Ayoub M, Robinson CV, Aquilina JA (2008) Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283:28513–28517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benesch JL, Aquilina JA, Baldwin AJ, Rekas A, Stengel F, Lindner RA, Basha E, Devlin GL, Horwitz J, Vierling E, Carver JA, Robinson CV (2010) The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chem Biol 17:1008–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley NJ, Fitch IT, Tuite MF (1992) The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 8:95–106

    CAS  PubMed  Google Scholar 

  • Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M, Haslbeck M, Buchner J (2012) Alternative bacterial two-component small heat shock protein systems. Proc Natl Acad Sci U S A 109:20407–20412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 86:407–485

    CAS  PubMed  Google Scholar 

  • Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bova MP, McHaourab HS, Han Y, Fung BKK (2000) Subunit exchange of small heat shock proteins – analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275:1035–1042

    CAS  PubMed  Google Scholar 

  • Bova MP, Huang Q, Ding L, Horwitz J (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem 277:38468–38475

    CAS  PubMed  Google Scholar 

  • Braun N, Zacharias M, Peschek J, Kastenmuller A, Zou J, Hanzlik M, Haslbeck M, Rappsilber J, Buchner J, Weinkauf S (2011) Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A 108:20491–20496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    CAS  PubMed  Google Scholar 

  • Buchner J, Walter S (2005) Analysis of chaperone function in vitro. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Wiley-VCH, Weinheim, pp 162–196

    Google Scholar 

  • Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB (2004) Some properties of human small heat shock protein Hsp20 (HspB6). Eur J Biochem 271:291–302

    CAS  PubMed  Google Scholar 

  • Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794:486–495

    CAS  PubMed  Google Scholar 

  • Butt E, Immler D, Meyer HE, Kotlyarov A, Laass K, Gaestel M (2001) Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants. J Biol Chem 276:7108–7113

    CAS  PubMed  Google Scholar 

  • Cairns J, Qin S, Philp R, Tan YH, Guy GR (1994) Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176–9183

    CAS  PubMed  Google Scholar 

  • Candido EP (2002) The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol 28:61–78

    CAS  PubMed  Google Scholar 

  • Cashikar AG, Duennwald ML, Lindquist SL (2005) A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280:23869–23875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspers GJ, Leunissen JA, De Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. J Mol Evol 40:238–248

    CAS  PubMed  Google Scholar 

  • Chalova AS, Sudnitsyna MV, Semenyuk PI, Orlov VN, Gusev NB (2014) Effect of disulfide crosslinking on thermal transitions and chaperone-like activity of human small heat shock protein HspB1. Cell Stress Chaperones 19:963–972

    Google Scholar 

  • Chen SJ, Sun TX, Akhtar NJ, Liang JJ (2001) Oxidation of human lens recombinant alphaA-crystallin and cysteine-deficient mutants. J Mol Biol 305:969–976

    CAS  PubMed  Google Scholar 

  • Chen J, Feige MJ, Franzmann TM, Bepperling A, Buchner J (2010) Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. J Mol Biol 398:122–131

    CAS  PubMed  Google Scholar 

  • Cheng G, Basha E, Wysocki VH, Vierling E (2008) Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 283:26634–26642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chernik IS, Panasenko OO, Li Y, Marston SB, Gusev NB (2004) pH-induced changes of the structure of small heat shock proteins with molecular mass 24/27 kDa (HspB1). Biochem Biophys Res Commun 324(4):1199–1203

    CAS  PubMed  Google Scholar 

  • Christians ES, Ishiwata T, Benjamin IJ (2012) Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 44:1632–1645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser FM, Kortmann J, Narberhaus F (2014) Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers. RNA Biol 11:594–608

    Google Scholar 

  • Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark AR, Lubsen NH, Slingsby C (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 44:1687–1697

    CAS  PubMed  Google Scholar 

  • De Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • De Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin–small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • de Wit NJ, Verschuure P, Kappe G, King SM, de Jong WW, van Muijen GN, Boelens WC (2004) Testis-specific human small heat shock protein HSPB9 is a cancer/testis antigen, and potentially interacts with the dynein subunit TCTEL1. Eur J Cell Biol 83:337–345

    PubMed  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587:1073–1080

    CAS  PubMed  Google Scholar 

  • Delbecq SP, Jehle S, Klevit R (2012) Binding determinants of the small heat shock protein, alphaB-crystallin: recognition of the ‘IxI’ motif. EMBO J 31:4587–4594

    CAS  PubMed Central  PubMed  Google Scholar 

  • deMiguel N, Braun N, Bepperling A, Kriehuber T, Kastenmuller A, Buchner J, Angel SO, Haslbeck M (2009) Structural and functional diversity in the family of small heat shock proteins from the parasite Toxoplasma gondii. Biochim Biophys Acta 1793:1738–1748

    CAS  Google Scholar 

  • Derham BK, Harding JJ (1999) α-crystallin as a molecular chaperone. Prog Retin Eye Res 18:463–509

    CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    CAS  PubMed  Google Scholar 

  • Fontaine JM, Sun X, Benndorf R, Welsh MJ (2005) Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337:1006–1011

    CAS  PubMed  Google Scholar 

  • Franzmann TM, Wuhr M, Richter K, Walter S, Buchner J (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350:1083–1093

    CAS  PubMed  Google Scholar 

  • Franzmann TM, Menhorn P, Walter S, Buchner J (2008) Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol Cell 29:207–216

    CAS  PubMed  Google Scholar 

  • Fu X (2014) Chaperone function and mechanism of small heat-shock proteins. Biochim Biophys Acta 46:347–356

    Google Scholar 

  • Fu L, Liang JJ (2002) Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem 277:4255–4260

    CAS  PubMed  Google Scholar 

  • Fu X, Shi X, Yan L, Zhang H, Chang Z (2013) In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker. J Biol Chem 288:31646–31654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaestel M (2002) sHsp-phosphorylation: enzymes, signaling pathways and functional implications. Prog Mol Subcell Biol 28:151–169

    CAS  PubMed  Google Scholar 

  • Gaestel M, Benndorf R, Hayess K, Priemer E, Engel K (1992) Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-dependent (type 2B) protein phosphatase. J Biol Chem 267:21607–21611

    CAS  PubMed  Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    CAS  PubMed  Google Scholar 

  • Ghosh JG, Shenoy AK Jr, Clark JI (2007) Interactions between important regulatory proteins and human alphaB crystallin. Biochemistry 46:6308–6317

    CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    CAS  PubMed  Google Scholar 

  • Gupta R, Srivastava OP (2004) Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin. J Biol Chem 279:44258–44269

    CAS  PubMed  Google Scholar 

  • Hanazono Y, Takeda K, Oka T, Abe T, Tomonari T, Akiyama N, Aikawa Y, Yohda M, Miki K (2013) Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. Structure 21:220–228

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23:638–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005a) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005b) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Kastenmuller A, Buchner J, Weinkauf S, Braun N (2008) Structural dynamics of archaeal small heat shock proteins. J Mol Biol 378:362–374

    CAS  PubMed  Google Scholar 

  • Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P (2009) Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 284:18801–18807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilton GR, Benesch JL (2012) Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J R Soc Interface 9:801–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hochberg GK, Ecroyd H, Liu C, Cox D, Cascio D, Sawaya MR, Collier MP, Stroud J, Carver JA, Baldwin AJ, Robinson CV, Eisenberg DS, Benesch JL, Laganowsky A (2014) The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci U S A 111:1562–1570

    Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Dev Biol 11(1):53–60

    CAS  PubMed  Google Scholar 

  • Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of αB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    CAS  PubMed  Google Scholar 

  • Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276:5346–5352

    CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci U S A 106:15604–15609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108:6409–6414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kantorow M, Piatigorsky J (1998) Phosphorylations of alpha A- and alpha B-crystallin. Int J Biol Macromol 22:307–314

    CAS  PubMed  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274–11278

    CAS  PubMed  Google Scholar 

  • Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15:342–346

    CAS  PubMed  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    CAS  PubMed  Google Scholar 

  • Kokke BP, Leroux MR, Candido EP, Boelens WC, De Jong WW (1998) Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett 433:228–232

    CAS  PubMed  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642

    CAS  PubMed  Google Scholar 

  • Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2005) Self-association of a small heat shock protein. J Mol Biol 345:631–642

    CAS  PubMed  Google Scholar 

  • Lentze N, Narberhaus F (2004) Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochem Biophys Res Commun 325:401–407

    CAS  PubMed  Google Scholar 

  • Lentze N, Aquilina JA, Lindbauer M, Robinson CV, Narberhaus F (2004) Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur J Biochem 271:2494–2503

    CAS  PubMed  Google Scholar 

  • Leroux MR, Ma BJ, Batelier G, Melki R, Candido EP (1997) Unique structural features of a novel class of small heat shock proteins. J Biol Chem 272:12847–12853

    CAS  PubMed  Google Scholar 

  • Lindner RA, Kapur A, Mariani M, Titmuss SJ, Carver JA (1998) Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem 25:170–183

    Google Scholar 

  • Lund AA, Rhoads DM, Lund AL, Cerny RL, Elthon TE (2001) In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem 276:29924–29929

    CAS  PubMed  Google Scholar 

  • Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS ONE 8:e81207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matuszewska M, Kuczynska-Wisnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280:12292–12298

    CAS  PubMed  Google Scholar 

  • McDonald ET, Bortolus M, Koteiche HA, McHaourab HS (2012) Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry 51:1257–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mchaourab HS, Dodson EK, Koteiche HA (2002) Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin. J Biol Chem 277:40557–40566

    CAS  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    CAS  PubMed Central  PubMed  Google Scholar 

  • McHaourab HS, Lin YL, Spiller BW (2012) Crystal structure of an activated variant of small heat shock protein Hsp16.5. Biochemistry 51:5105–5112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merck KB, Horwitz J, Kersten M, Overkamp P, Gaestel M, Bloemendal H, De Jong WW (1993) Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep 18:209–215

    CAS  PubMed  Google Scholar 

  • Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595

    CAS  PubMed  Google Scholar 

  • Moroni M, Garland D (2001) In vitro dephosphorylation of α-crystallin is dependent on the state of oligomerization. Biochim Biophys Acta 1546:282–290

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17:157–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oya-Ito T, Liu BF, Nagaraj RH (2006) Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem 99:279–291

    CAS  PubMed  Google Scholar 

  • Pasupuleti N, Gangadhariah M, Padmanabha S, Santhoshkumar P, Nagaraj RH (2010a) The role of the cysteine residue in the chaperone and anti-apoptotic functions of human Hsp27. J Cell Biochem 110:408–419

    CAS  PubMed  Google Scholar 

  • Pasupuleti N, Matsuyama S, Voss O, Doseff AI, Song K, Danielpour D, Nagaraj RH (2010b) The anti-apoptotic function of human alphaA-crystallin is directly related to its chaperone activity. Cell Death Dis 1:e31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:3780–3789

    Google Scholar 

  • Posner M, Kiss AJ, Skiba J, Drossman A, Dolinska MB, Hejtmancik JF, Sergeev YV (2012) Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein alphaA-crystallin. PLoS ONE 7:e34438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20:900–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratajczak E, Zietkiewicz S, Liberek K (2009) Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J Mol Biol 386:178–189

    CAS  PubMed  Google Scholar 

  • Ratajczak E, Strozecka J, Matuszewska M, Zietkiewicz S, Kuczynska-Wisnik D, Laskowska E, Liberek K (2010) IbpA the small heat shock protein from Escherichia coli forms fibrils in the absence of its cochaperone IbpB. FEBS Lett 584:2253–2257

    CAS  PubMed  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J Biol Chem 274:18947–18956

    CAS  PubMed  Google Scholar 

  • Santhoshkumar P, Sharma KK (2002) Identification of a region in alcohol dehydrogenase that binds to a-crystallin during chaperone action. Biochim Biophys Acta 1598:115–121

    CAS  PubMed  Google Scholar 

  • Satish Kumar M, Mrudula T, Mitra N, Bhanuprakash Reddy G (2004) Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification. Exp Eye Res 79:577–583

    CAS  PubMed  Google Scholar 

  • Sharma KK, Kumar GS, Murphy AS, Kester K (1998) Identification of 1,1′-bi(4-anilino)naphthalene-5,5′-disulfonic acid binding sequences in alpha-crystallin. J Biol Chem 273:15474–15478

    CAS  PubMed  Google Scholar 

  • Shashidharamurthy R, Koteiche HA, Dong J, Mchaourab HS (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280:5281–5289

    CAS  PubMed  Google Scholar 

  • Shearstone JR, Baneyx F (1999) Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J Biol Chem 274:9937–9945

    CAS  PubMed  Google Scholar 

  • Shi J, Koteiche HA, McDonald ET, Fox TL, Stewart PL, McHaourab HS (2013) Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding. J Biol Chem 288:4819–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94:975–984

    CAS  PubMed  Google Scholar 

  • Slingsby C, Wistow GJ (2014) Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. Prog Biophys Mol Biol 115:52–67

    CAS  PubMed  Google Scholar 

  • Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sobott F, Benesch JL, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 277:38921–38929

    CAS  PubMed  Google Scholar 

  • Stege GJ, Li GC, Li L, Kampinga HH, Konings AW (1994) On the role of hsp72 in heat-induced intranuclear protein aggregation. Int J Hyperth 10:659–674

    CAS  Google Scholar 

  • Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJ, De Jong WW (1999) The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262:152–156

    CAS  PubMed  Google Scholar 

  • Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107:2007–2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278:18015–18021

    CAS  PubMed  Google Scholar 

  • Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation – the N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279:11222–11228

    CAS  PubMed  Google Scholar 

  • Studer S, Narberhaus F (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218

    CAS  PubMed  Google Scholar 

  • Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104

    CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2004) Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279:2394–2402

    CAS  PubMed  Google Scholar 

  • Treweek TM, Ecroyd H, Williams DM, Meehan S, Carver JA, Walker MJ (2007) Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation. PLoS ONE 2:e1046

    PubMed Central  PubMed  Google Scholar 

  • Treweek TM, Rekas A, Walker MJ, Carver JA (2010) A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, alphaA- and alphaB-crystallin. Exp Eye Res 91:691–699

    CAS  PubMed  Google Scholar 

  • van den IJssel PR, Overkamp P, Bloemendal H, de Jong WW (1998) Phosphorylation of αB-crystallin and HSP27 is induced by similar stressors in HeLa cells. Biochem Biophys Res Commun 247:518–523

    PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    PubMed  Google Scholar 

  • van Montfort R, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    CAS  PubMed  Google Scholar 

  • Voorter CE, de Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, de Jong WW (1989) The in vivo phosphorylation sites of bovine αB-crystallin. FEBS Lett 259:50–52

    CAS  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed 41:1098–1113

    CAS  Google Scholar 

  • White HE, Orlova EV, Chen S, Wang L, Ignatiou A, Gowen B, Stromer T, Franzmann TM, Haslbeck M, Buchner J, Saibil HR (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure 14:1197–1204

    CAS  PubMed  Google Scholar 

  • Wintrode PL, Friedrich KL, Vierling E, Smith JB, Smith DL (2003) Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry. Biochemistry 42:10667–10673

    CAS  PubMed  Google Scholar 

  • Wotton D, Freeman K, Shore D (1996) Multimerization of Hsp42p, a novel heat shock protein of Saccharomyces cerevisiae, is dependent on a conserved carboxyl-terminal sequence. J Biol Chem 271:2717–2723

    CAS  PubMed  Google Scholar 

  • Yang H, Huang S, Dai H, Gong Y, Zheng C, Chang Z (1999) The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Sci 8:174–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zavialov A, Benndorf R, Ehrnsperger M, Zav’yalov V, Dudich I, Buchner J, Gaestel M (1998a) The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22:163–173

    CAS  PubMed  Google Scholar 

  • Zavialov AV, Gaestel M, Korpela T, Zav’yalov VP (1998b) Thiol/disulfide exchange between small heat shock protein 25 and glutathione. Biochim Biophys Acta 1388:123–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (SFB 1035) and CIPSM for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Haslbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haslbeck, M., Weinkauf, S., Buchner, J. (2015). Regulation of the Chaperone Function of Small Hsps. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_6

Download citation

Publish with us

Policies and ethics