Skip to main content

Model Chaperones: Small Heat Shock Proteins from Plants

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

Small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as ATP-independent molecular chaperones to prevent irreversible aggregation of stress-labile proteins. sHSPs range in size from ~12 to 42 kDa, but typically assemble into 12 to >32 subunit oligomers. The monomers are defined by a conserved α-crystallin domain flanked by divergent and flexible N-terminal and C-terminal arms. In higher plants sHSPs have evolved independently of metazoan and bacterial homologs and comprise multiple families of cytosolic proteins, along with proteins targeted to the nucleus, chloroplasts, mitochondria, endoplasmic reticulum and peroxisomes. This diversity of sHSPs is unique to land plants and likely arose as a result of their frequent exposure to stress due to their sessile nature. The availability of the high resolution structure of a dodecameric cytosolic class I sHSP from wheat, Ta16.9 (PDB ID: 1GME; 2.7 Å resolution), has facilitated detailed in vitro studies of sHSP chaperone action. A working model proposes that sHSP oligomers dissociate into dimers during heat stress, revealing hydrophobic patches that interact with exposed hydrophobic regions on denaturing substrates, maintaining them in a soluble, folding-competent state. sHSP-substrate complexes are then acted on by ATP-dependent chaperones to restore substrates to their native state. However, much remains to be done to connect this model with the function of the many different sHSPs found in plants. Further genetic and biochemical studies are needed to identify sHSP substrates and to define the mechanism by which sHSPs function, not only during stress, but also during specific developmental stages in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Alpha-crystallin domain

AKRA2:

Ankyrin repeat containing protein 2A (UniProt accession: Q9SAR5)

At14.7:

Arabidopsis thaliana heat shock protein 14.7 (UnitProt accession: Q6NLV0)

At15.7:

Arabidopsis thaliana heat shock protein 15.7 (UniProt accession: Q9FHQ3)

At17.4:

Arabidopsis thaliana heat shock protein 17.4 (SwissProt accession: Q9SYG1)

At17.7:

Arabidopsis thaliana heat shock protein 17.7 (UniProt accession: O81822)

At17.8:

Arabidopsis thaliana heat shock protein 17.8 (UniProt accession: Q9LNW0)

At18.5:

Arabidopsis thaliana heat shock protein 18.5 (UniProt accession: O64564)

At21.7:

Arabidopsis thaliana heat shock protein 21.7 (UniProt accession: Q9FIT9)

At22.0:

Arabidopsis thaliana heat shock protein 22.0 (UniProt accession: Q38806)

At23.5:

Arabidopsis thaliana heat shock protein 23.5 (UniProt accession: Q9FGM9)

At23.6:

Arabidopsis thaliana heat shock protein 23.6 (UniProt accession: Q96331)

At26.5:

Arabidopsis thaliana heat shock protein 26.5 (UnitProt accession: Q9SSQ8)

C. elegans :

Caenorhabditis elegans

Dr17.7:

Deinococcus radiodurans heat shock protein 17.7 (UniProt accession: Q9RTR5)

Dr20.2:

Deinococcus radiodurans heat shock protein 20.2 (UniProt accession: Q9RVB5)

EPR:

Electron paramagnetic resonance

ER:

Endoplasmic reticulum

FRET:

Förster (or fluorescence) resonance energy transfer

GST:

Glutathione-S-transferase

HSP:

Heat shock protein

MALDI-TOF:

Matrix assisted laser desorption ionization – time of flight

MI:

Mitochondrial class I small heat shock protein

MII:

Mitochondrial class II small heat shock protein

Mj16.5:

Methanocaldococcus jannaschii heat shock protein 16.5 (UniProt accession: Q57733)

NtHsp24.6:

Nicotiana tabacum heat shock protein 24.6

OEP7:

Outer envelope protein 7 (chloroplast) (UnitProt accession: Q9SVC4)

Ps17.7:

Pisum sativum heat shock protein 17.7 (UniProt accession: P19242)

Ps18.1:

Pisum sativum heat shock protein 18.1 (UniProt accession: P19243)

Sc26:

Saccharomyces cerevisiae heat shock protein 26 (UniProt accession: P15992)

sHSP:

Small heat shock protein

Sp16.0:

Schizosaccharomyces pombe heat shock protein 16.0 (UniProt accession: O14368)

Syn16.6:

Synechocystis heat shock protein 16.6 (Unit Prot accession: M1LDX9)

Ta16.9:

Triticum asetivum heat shock protein 16.9 (UniProt accession: P12810)

Ta17.8:

Triticum asetivum heat shock protein 17.8 (UniProt accession: Q94KM0)

References

  • Ahn YJ, Zimmerman JL (2006) Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ 29:95–104

    CAS  PubMed  Google Scholar 

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792

    CAS  PubMed  Google Scholar 

  • Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    CAS  PubMed  Google Scholar 

  • Baldwin AJ, Lioe H, Robinson CV, Kay LE, Benesch JL (2011) alphaB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J Mol Biol 413:297–309

    CAS  PubMed  Google Scholar 

  • Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411:110–122

    CAS  PubMed  Google Scholar 

  • Barnett T, Altschuler M, McDaniel CN, Mascarenhas JP (1980) Heat shock induced proteins in plant cells. Dev Genet 1:331–340

    CAS  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575

    CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    CAS  PubMed  Google Scholar 

  • Basha E, Friedrich KL, Vierling E (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem 281:39943–39952

    CAS  PubMed  Google Scholar 

  • Basha E, Jones C, Wysocki V, Vierling E (2010) Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 285:11489–11497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E (2013) An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J Mol Biol 425:1683–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benesch JL, Aquilina JA, Baldwin AJ, Rekas A, Stengel F, Lindner RA, Basha E, Devlin GL, Horwitz J, Vierling E, Carver JA, Robinson CV (2010) The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chem Biol 17:1008–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M, Haslbeck M, Buchner J (2012) Alternative bacterial two-component small heat shock protein systems. Proc Natl Acad Sci U S A 109:20407–20412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    CAS  PubMed  Google Scholar 

  • Bova MP, McHaourab HS, Han Y, Fung BK (2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275:1035–1042

    CAS  PubMed  Google Scholar 

  • Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47:334–343

    CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    CAS  PubMed  Google Scholar 

  • Chen Q, Vierling E (1991) Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gen Genet 228:328

    CAS  PubMed  Google Scholar 

  • Cheng G, Basha E, Wysocki VH, Vierling E (2008) Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 283:26634–26642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492

    CAS  PubMed  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 67:363–373

    CAS  PubMed  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin – small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587:1073–1080

    CAS  PubMed  Google Scholar 

  • Derocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:1038–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E (2015) Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ 38:693–709

    CAS  PubMed  Google Scholar 

  • Franzmann TM, Wuhr M, Richter K, Walter S, Buchner J (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350:1083–1093

    CAS  PubMed  Google Scholar 

  • Franzmann TM, Menhorn P, Walter S, Buchner J (2008) Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol Cell 29:207–216

    CAS  PubMed  Google Scholar 

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279:1080–1089

    CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2004) Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. J Biol Chem 279:32674–32683

    CAS  PubMed  Google Scholar 

  • Giese KC, Basha E, Catague BY, Vierling E (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci U S A 102:18896–18901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61:453–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136

    CAS  PubMed  Google Scholar 

  • Hanazono Y, Takeda K, Yohda M, Miki K (2012) Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0. J Mol Biol 422:100–108

    CAS  PubMed  Google Scholar 

  • Hanazono Y, Takeda K, Oka T, Abe T, Tomonari T, Akiyama N, Aikawa Y, Yohda M, Miki K (2013) Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. Structure 21:220–228

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868

    CAS  PubMed  Google Scholar 

  • Helm KW, Schmeits J, Vierling E (1995) An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol 107:287–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helm KW, Lee GJ, Vierling E (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol 114:1477–1485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilario E, Teixeira EC, Pedroso GA, Bertolini MC, Medrano FJ (2006) Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the alpha-crystallin family. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:446–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilario E, Martin FJ, Bertolini MC, Fan L (2011) Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. J Mol Biol 408:74–86

    CAS  PubMed  Google Scholar 

  • Hochberg GK, Ecroyd H, Liu C, Cox D, Cascio D, Sawaya MR, Collier MP, Stroud J, Carver JA, Baldwin AJ, Robinson CV, Eisenberg DS, Benesch JL, Laganowsky A (2014) The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci U S A 111:E1562–E1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A 79:2360–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci U S A 106:15604–15609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol 17:1037–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    CAS  PubMed  Google Scholar 

  • Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 10:519–524

    CAS  PubMed  Google Scholar 

  • Kennaway CK, Benesch JL, Gohlke U, Wang L, Robinson CV, Orlova EV, Saibil HR, Keep NH (2005) Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J Biol Chem 280:33419–33425

    CAS  PubMed  Google Scholar 

  • Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci U S A 78:3526–3530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    CAS  PubMed  Google Scholar 

  • Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J, Sohn EJ, Hwang I (2011a) Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. Plant Physiol 157:132–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KP, Yu JH, Park SM, Koo HJ, Hong CB (2011b) Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates. BMB Rep 44:816–820

    CAS  PubMed  Google Scholar 

  • Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34:371–377

    CAS  PubMed  Google Scholar 

  • Kim DH, Xu ZY, Hwang I (2013) AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep 32:1953–1963

    CAS  PubMed  Google Scholar 

  • Kirschner M, Winkelhaus S, Thierfelder JM, Nover L (2000) Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J 24:397–411

    CAS  PubMed  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642

    CAS  PubMed  Google Scholar 

  • Laganowsky A, Eisenberg D (2010) Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin. Protein Sci 19:1978–1984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert W, Koeck PJ, Ahrman E, Purhonen P, Cheng K, Elmlund D, Hebert H, Emanuelsson C (2011) Subunit arrangement in the dodecameric chloroplast small heat shock protein Hsp21. Protein Sci 20:291–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E (2005) Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell 17:559–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KW, Cha JY, Kim KH, Kim YG, Lee BH, Lee SH (2012) Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol Lett 34:167–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenne C, Block MA, Garin J, Douce R (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J 311(Pt 3):805–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Ji L, Yang X, Meng Q, Guo S (2012) The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Rep 31:1969–1979

    CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14:577. doi:10.1186/1471-2164-14-577

    PubMed Central  PubMed  Google Scholar 

  • Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, hsp17. 7, results in increased or decreased thermotolerancedouble dagger. Plant J 20:89–99

    CAS  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B (2003a) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595

    CAS  PubMed  Google Scholar 

  • Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003b) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042

    CAS  PubMed  Google Scholar 

  • Mu C, Zhang S, Yu G, Chen N, Li X, Liu H (2013) Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 8:e82264

    PubMed Central  PubMed  Google Scholar 

  • Nagao RT, Czarnecka E, Gurley WB, Schoffl F, Key JL (1985) Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multigene family. Mol Cell Biol 5:3417–3428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9:1298–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Painter AJ, Jaya N, Basha E, Vierling E, Robinson CV, Benesch JL (2008) Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem Biol 15:246–253

    CAS  PubMed  Google Scholar 

  • Patel S, Vierling E, Tama F (2014) Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins. Biophys J 106:2644–2655

    CAS  PubMed  Google Scholar 

  • Personat JM, Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Jordano J (2014) Co-overexpression of two heat shock factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biol 14:56

    PubMed Central  PubMed  Google Scholar 

  • Peschek J, Braun N, Franzmann TM, Georgalis Y, Haslbeck M, Weinkauf S, Buchner J (2009) The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A 106:13272–13277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulain P, Gelly JC, Flatters D (2010) Detection and architecture of small heat shock protein monomers. PLoS One 5:e9990

    PubMed Central  PubMed  Google Scholar 

  • Quinlan RA, Zhang Y, Lansbury A, Williamson I, Pohl E, Sun F (2013) Changes in the quaternary structure and function of MjHSP16.5 attributable to deletion of the IXI motif and introduction of the substitution, R107G, in the alpha-crystallin domain. Philos Trans R Soc Lond B Biol Sci 368:20120327

    PubMed Central  PubMed  Google Scholar 

  • Reddy PS, Kavi Kishor PB, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One 9:e89125

    PubMed Central  PubMed  Google Scholar 

  • Ruibal C, Castro A, Carballo V, Szabados L, Vidal S (2013) Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biol 13:174

    PubMed Central  PubMed  Google Scholar 

  • Saji H, Iizuka R, Yoshida T, Abe T, Kidokoro S, Ishii N, Yohda M (2008) Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Proteins 71:771–782

    CAS  PubMed  Google Scholar 

  • Salas-Munoz S, Gomez-Anduro G, Delgado-Sanchez P, Rodriguez-Kessler M, Jimenez-Bremont JF (2012) The opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana. Int J Mol Sci 13:10154–10175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    CAS  PubMed  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoffl F, Key JL (1982) An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J Mol Appl Genet 1:301–314

    CAS  PubMed  Google Scholar 

  • Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H (2010) ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22:811–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Koteiche HA, McDonald ET, Fox TL, Stewart PL, McHaourab HS (2013) Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding. J Biol Chem 288:4819–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD (2003) Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 8:381–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V (2000) Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J 23:703–713

    CAS  PubMed  Google Scholar 

  • Sobott F, Benesch JL, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 277:38921–38929

    CAS  PubMed  Google Scholar 

  • Song NH, Ahn YJ (2010) DcHsp17.7, a small heat shock protein from carrot, is upregulated under cold stress and enhances cold tolerance by functioning as a molecular chaperone. HortSci 45:469–474

    Google Scholar 

  • Song NH, Ahn YJ (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. N Biotechnol 28:698–704

    CAS  PubMed  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the alpha-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    CAS  PubMed  Google Scholar 

  • Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107:2007–2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H, Basha E, Jaya N, Vierling E, Benesch JL (2012) Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem Biol 19:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278:18015–18021

    CAS  PubMed  Google Scholar 

  • Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279:11222–11228

    CAS  PubMed  Google Scholar 

  • Sudnitsyna MV, Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) The role of intrinsically disordered regions in the structure and functioning of small heat shock proteins. Curr Protein Pept Sci 13:76–85

    CAS  PubMed  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    CAS  PubMed  Google Scholar 

  • Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    CAS  PubMed  Google Scholar 

  • Takeda K, Hayashi T, Abe T, Hirano Y, Hanazono Y, Yohda M, Miki K (2011) Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. J Struct Biol 174:92–99

    CAS  PubMed  Google Scholar 

  • Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J (2010) Loss of function of the HSFA9 seed longevity program. Plant Cell Environ 33:1408–1417

    CAS  PubMed  Google Scholar 

  • Tiroli AO, Ramos CH (2007) Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity. Int J Biochem Cell Biol 39:818–831

    CAS  PubMed  Google Scholar 

  • Tiroli-Cepeda AO, Ramos CH (2010) Heat causes oligomeric disassembly and increases the chaperone activity of small heat shock proteins from sugarcane. Plant Physiol Biochem 48:108–116

    CAS  PubMed  Google Scholar 

  • Tripp J, Mishra SK, Scharf KD (2009) Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell Environ 32:123–133

    CAS  PubMed  Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J (2009) Defining the mitochondrial stress response in Arabidopsis thaliana. Mol Plant 2:1310–1324

    PubMed  Google Scholar 

  • Van Montfort R, Slingsby C, Vierling E (2001a) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001b) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol 42:579–620

    CAS  Google Scholar 

  • Vierling E, Mishkind ML, Schmidt GW, Key JL (1986) Specific heat shock proteins are transported into chloroplasts. Proc Natl Acad Sci U S A 83:361–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vierling E, Nagao RT, DeRocher AE, Harris LM (1988) A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. EMBO J 7:575–581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wadhwa R, Ryu J, Gao R, Choi IK, Morrow G, Kaur K, Kim I, Kaul SC, Yun CO, Tanguay RM (2010) Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J Biol Chem 285:3833–3839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    CAS  PubMed  Google Scholar 

  • Waters ER, Rioflorido I (2007) Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol 65:162–174

    CAS  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999a) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 96:14394–14399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999b) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    CAS  PubMed  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56:517–530

    CAS  PubMed  Google Scholar 

  • Weeks SD, Baranova EV, Heirbaut M, Beelen S, Shkumatov AV, Gusev NB, Strelkov SV (2014) Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. J Struct Biol 185:342–354

    CAS  PubMed  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    CAS  PubMed Central  PubMed  Google Scholar 

  • White HE, Orlova EV, Chen S, Wang L, Ignatiou A, Gowen B, Stromer T, Franzmann TM, Haslbeck M, Buchner J, Saibil HR (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure 14:1197–1204

    CAS  PubMed  Google Scholar 

  • Wintrode PL, Friedrich KL, Vierling E, Smith JB, Smith DL (2003) Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry. Biochemistry 42:10667–10673

    CAS  PubMed  Google Scholar 

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2009) Yeast heat-shock protein gene HSP26 enhances freezing tolerance in Arabidopsis. J Plant Physiol 166:844–850

    CAS  PubMed  Google Scholar 

  • Yeh CH, Chang PF, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci U S A 94:10967–10972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol 128:661–668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon HJ, Kim KP, Park SM, Hong CB (2005) Functional mode of NtHSP17.6. a cytosolic small heat-shock protein from Nicotiana tabacum. J Plant Biol 48:120–127

    CAS  Google Scholar 

  • Zhao C, Shono M, Sun A, Yi S, Li M, Liu J (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841

    CAS  PubMed  Google Scholar 

  • Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25:2925–2943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389

    CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E. V. would like to acknowledge long term support for work on sHSP biochemistry and function from the National Institutes of Health GM RO142762, as well as support from the National Science Foundation and United States Department of Agriculture competitive grants program for studies of sHSPs in plants and the Department of Energy Basic Bioenergy Sciences program for work on the interaction of plant sHSPs and Hsp101. We also thank many lab members and colleagues for critical and productive collaborations over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Vierling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santhanagopalan, I., Basha, E., Ballard, K.N., Bopp, N.E., Vierling, E. (2015). Model Chaperones: Small Heat Shock Proteins from Plants. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_5

Download citation

Publish with us

Policies and ethics