Skip to main content

Small Heat Shock Proteins and Diapause in the Crustacean, Artemia franciscana

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

Diapause is a physiological state of metabolic depression and increased stress tolerance observed in many organisms, and especially prominent in insects. The small heat shock proteins (sHsps) mediate protein storage as well as stress tolerance and their accumulation within cells is controlled during diapause. Partially denatured proteins are bound by sHsps preventing their irreversible denaturation, and these proteins are released to Hsp70 and other molecular chaperones for either ATP-dependent folding or degradation. During diapause, which is characterized by exposure to varying levels of stress, proteins are sequestered by sHsps, thus, by enhancing sHsp synthesis the protection of other proteins is maximized. In the crustacean, Artemia franciscana, diapause occurs in encysted gastrula stage embryos (cysts), entailing a profound reduction in metabolism and extreme stress tolerance. Three sHsps, namely p26, ArHsp21 and ArHsp22, accumulate to varying levels in diapause-destined A. franciscana embryos. Experiments performed in vivo by the use of RNA interference (RNAi) demonstrate that p26 has an important role in stress tolerance while also influencing embryo development and diapause maintenance. The activities of ArHsp21 and ArHsp22 are less well defined although the former sHsp may have a minor role in stress tolerance. The data described herein reveal that the activities of sHsps during diapause are more diverse than previously thought and they contribute to the general understanding of sHsp function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Andley UP, Malone JP, Townsend RR (2014) In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. PLoS One 9(4):e95507

    Article  PubMed Central  PubMed  Google Scholar 

  • Arrigo A-P (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587:1959–1969

    Article  CAS  PubMed  Google Scholar 

  • Arrigo A-P, Gibert B (2013) Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperth 29:409–422

    Article  CAS  Google Scholar 

  • Aruda AM, Baumgartner MF, Reitzel AM, Tarrant AM (2011) Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J Insect Physiol 57:665–675

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boswell LC, Moore DS, Hand SC (2014) Quantification of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperones 19:329–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Denekamp NY, Throne MAS, Reinhardt R, Drungowski M, Albrecht MW, Klages S, Beck A, Kube M, Lubzens E (2012) Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS One 7(1):e29365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B 128:613–624

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (2005) Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integr Comp Biol 45:715–724

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (2007) Protein stability in Artemia embryos during prolonged anoxia. Biol Bull 212:74–81

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (2011) The unusual response of encysted embryos of the animal extremophile, Artemia franciscana, to prolonged anoxia. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: paleontological strategies and evidence for eukaryotic survival. Springer, Dordrecht/New York, pp 189–203

    Google Scholar 

  • Clegg JS, Jackson SA (1998) The metabolic status of quiescent and diapause embryos of Artemia franciscana (Kellogg). Arch Hydrobiol Spec Issues Adv Limnol 52:425–439

    Google Scholar 

  • Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of Artemia franciscana. Exp Cell Res 219:1–7

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Drinkwater LE, Sorgeloos P (1996) The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiol Zool 69:49–66

    Google Scholar 

  • Crack JA, Mansour M, Sun Y, MacRae TH (2002) Functional analysis of a small heat shock/α-crystallin protein from Artemia franciscana Oligomerization and thermotolerance. Eur J Biochem 269:933–942

    Article  CAS  PubMed  Google Scholar 

  • Day RM, Gupta JS, MacRae TH (2003) A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 8:183–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108

    Article  PubMed Central  PubMed  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Gräber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan Q, Huang L-Z, Zhu X-J, Zhang K-K, Ye H-F, Luo Y, Sun X-H, Zhou P, Lu Y (2014) Identification of proteins that interact with alpha A-crystallin using a human proteome microarray. Mol Vis 20:117–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T (2009) Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 10:469

    Article  PubMed Central  PubMed  Google Scholar 

  • Fu X, Shi X, Yan L, Zhang H, Chang Z (2013) In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker. J Biol Chem 288:31646–31654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. J Insect Physiol 57:567–576

    Article  CAS  PubMed  Google Scholar 

  • Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Annu Rev Entomol 56:103–121

    Article  CAS  PubMed  Google Scholar 

  • Hamann S, Métrailler S, Schorderet DF, Cottet S (2013) Analysis of the cytoprotective role of α-crystallins in cell survival and implication of the αA-crystallin C-terminal extension domain in preventing bax-induced apoptosis. PLoS One 8(2):e55372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanazono Y, Takeda K, Yohda M, Miki K (2012) Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0. J Mol Biol 422:100–108

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  CAS  PubMed  Google Scholar 

  • Hengherr S, Schill RO, Clegg JS (2011) Mechanisms associated with cellular desiccation tolerance of Artemia encysted embryos from locations around the world. Comp Biochem Physiol A 160:137–142

    Article  CAS  Google Scholar 

  • Hilario E, Martin FJM, Bertolini MC, Fan L (2011) Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. J Mol Biol 408:74–86

    Article  CAS  PubMed  Google Scholar 

  • Hilton GR, Hochberg GKA, Laganowsky A, McGinnigle SI, Baldwin AJ, Benesch JLP (2013) C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philos Trans R Soc B 368:20110405

    Article  Google Scholar 

  • Hu Y, Bojikova-Fournier S, King AM, MacRae TH (2011) The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress Chaperones 16:133–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson SA, Clegg JS (1996) Ontogeny of low molecular weight stress protein p26 during early development of the brine shrimp, Artemia franciscana. Dev Growth Differ 38:153–160

    Article  CAS  Google Scholar 

  • Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108:6409–6414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King AM, MacRae TH (2012) The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS One 7(8):e43723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King AM, Toxopeus J, MacRae TH (2013) Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 280:4761–4772

    Article  CAS  PubMed  Google Scholar 

  • King AM, Toxopeus J, MacRae TH (2014) Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. J Exp Biol 217:1719–1724

    Google Scholar 

  • KoÅ¡tál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127

    Article  PubMed  Google Scholar 

  • Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang P, MacRae TH (1999) The synthesis of a small heat shock/α-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Amons R, MacRae TH, Clegg JS (1997a) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/α-crystalin protein. Eur J Biochem 243:225–232

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Amons R, Clegg JS, MacRae TH (1997b) Molecular characterization of a small heat shock/α-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67:2405–2424

    Article  CAS  PubMed  Google Scholar 

  • Mali B, Grohme MA, Förster F, Dandekar T, Schnölzer M, Reuter D, Welnicz W, Schill RO, Frohme M (2010) Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics 11:168

    Article  PubMed Central  PubMed  Google Scholar 

  • McDonald ET, Bortolus M, Koteiche HA, Mchaourab HS (2012) Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry 51:1257–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mchaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: the chaperone activity of small heat-shock proteins. Biochemistry 48:3828–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284:10714–10719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol 202:409–420

    Article  Google Scholar 

  • Palmieri V, Maulucci G, Maiorana A, Papi M, De Spirito M (2013) α-crystallin modulates its chaperone activity by varying the exposed surface. ChemBioChem 14:2362–2370

    Article  CAS  PubMed  Google Scholar 

  • Patil YN, Marden B, Brand MD, Hand SC (2013) Metabolic downregulation and inhibition of carbohydrate catabolism during diapause in embryos of Artemia franciscana. Physiol Biochem Zool 86:106–118

    Article  CAS  PubMed  Google Scholar 

  • Pauwels K, Stoks R, Verbiest A, De Meester L (2007) Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna. Hydrobiologia 594:91–96

    Article  CAS  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmüller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podrabsky JE, Somero GN (2007) An inducible 70 kDa-class heat shock protein is constitutively expressed during early development and diapause in the annual killifish Austrofundulus limnaeus. Cell Stress Chaperones 12:199–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podrabsky JE, Tingaud-Sequeira A, Cerdà J (2010) Metabolic dormancy and responses to environmental desiccation in fish embryos. In: Lubzens E, Cerdà J, Clark MS (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 203–226

    Chapter  Google Scholar 

  • Ptak GE, Tacconi E, Czernik M, Toschi P, Modlinski JA, Loi P (2012) Embryonic diapause is conserved across mammals. PLoS One 7(3):e33027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008a) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411:605–611

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008b) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275:3556–3566

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2010) A molecular overview of diapause in embryos of the crustacean, Artemia francsicana. In: Lubzens E, Cerdà J, Clark MS (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 165–187

    Chapter  Google Scholar 

  • Qiu Z, Tsoi SCM, MacRae TH (2007) Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 124:856–867

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RA, Zhang Y, Lansbury A, Williamson I, Pohl E, Sun F (2013) Changes in the quaternary structure and function of MjHSP16.5 attributable to deletion of the IXI motif and introduction of the substitution, R107G, in the α-crystallin domain. Philos Trans R Soc B 368:20120372

    Article  Google Scholar 

  • Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brümmer F, Schill RO (2010) Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 15:423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds JA, Hand SC (2009) Decoupling development and energy flow during embryonic diapause in the cricket, Allonemobius socius. J Exp Biol 212:2065–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 104:11130–11137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robbins HM, Van Stappen G, Sorgeloos P, Sung YY, MacRae TH, Bossier P (2010) Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. J Exp Biol 213:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Shahangian SS, Rasti B, Sajedi RH, Khodarahmi R, Taghdir M, Ranjbar B (2011) Artemin as an efficient molecular chaperone. Protein J 30:549–557

    Article  CAS  PubMed  Google Scholar 

  • Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005a) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005b) Characterization of novel sequence motifs within the N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS J 272:5230–5243

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Mansour M, Crack JA, Gass GL, MacRae TH (2004) Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279:39999–40006

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Bojikova-Fournier S, MacRae TH (2006) Structural and functional roles for β-strand 7 in the α-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS J 273:1020–1034

    Article  CAS  PubMed  Google Scholar 

  • Tammariello SP, Denlinger DL (1998) G0/G1 cell cycle arrest in the brain of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect Biochem Mol Biol 28:83–89

    Article  CAS  PubMed  Google Scholar 

  • Tanguay JA, Reyes RC, Clegg JS (2004) Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. J Biosci 29:489–501

    Article  PubMed  Google Scholar 

  • Toxopeus J, Warner AH, MacRae TH (2014) Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress Chaperones (in Press)

    Google Scholar 

  • Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH (2006) Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress Chaperones 11:71–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592

    Article  CAS  PubMed  Google Scholar 

  • Warner AH, Chakrabortee S, Tunnacliffe A, Clegg JS (2012) Complexity of the heat-soluble LEA proteome in Artemia species. Comp Biochem Physiol D 7:260–267

    CAS  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and Hsp70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614

    Article  PubMed  Google Scholar 

  • Wu G, Zhang H, Sun J, Liu F, Ge X, Chen W-H, Yu J, Wang W (2011) Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comp Biochem Physiol B 160:32–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to THM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. MacRae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

MacRae, T.H. (2015). Small Heat Shock Proteins and Diapause in the Crustacean, Artemia franciscana . In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_24

Download citation

Publish with us

Policies and ethics