Skip to main content

Role of HSPB8 in the Proteostasis Network: From Protein Synthesis to Protein Degradation and Beyond

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

  • 1254 Accesses

Abstract

Proper protein folding is crucial for protein stability and function; when folding fails, due to stress or genetic mutations, proteins may become toxic. Cells have evolved a complex protein quality control (PQC) system to protect against the toxicity exerted by aberrantly folded proteins, that may aggregate accumulating in various cellular compartments perturbing essential cellular activities, ultimately leading to cell and neuron death. The PQC comprises molecular chaperones, degradative systems (proteasome and autophagy) and components of the unfolded protein response. Prevention of protein aggregation, clearance of misfolded substrates and attenuation of translation, which decreases the amount of misfolding clients to levels manageable by the molecular chaperones, are all key steps for the maintenance of proteostasis and cell survival. In parallel, alterations of proteostasis may also (indirectly) influence RNA homeostasis; in fact, RNA-containing aggregates, known as stress granules, accumulate in cells with impaired PQC and autophagy colocalizing with proteinaceous aggregates in several neurodegenerative diseases. Among the different molecular chaperones, here we will focus on the small heat shock protein HSPB8, which is expressed in neurons in basal conditions and upregulated in response to misfolded protein accumulation. HSPB8 exerts protective functions in several models of protein conformation neurodegenerative diseases. The putative sites of action of HSPB8 that confer HSPB8 pro-survival and anti-aggregation functions are discussed, as well as its potential role at the cross-road between proteostasis and ribostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ATX2:

Ataxin 2

eIF2α:

Eukaryotic initiation factor 2 on Ser51 of the α subunit

FTLD-U:

Frontotemporal lobar degeneration with ubiquitin-positive inclusions

FUS:

Fused in sarcoma

HD:

Huntington’s disease

hnRNPA1:

Heterogeneous nuclear ribonucleoprotein A1

HSP:

Heat shock protein

IBMPFD:

Inclusion body myopathy with early-onset Paget disease and frontotemporal dementia

JNK:

c-Jun N-terminal kinase

KD:

Kennedy’s disease

LAMP2A:

Lysosome-associated membrane protein 2A

LC3:

Microtubule-associated protein 1A/1B-light chain 3

MKK7:

Mitogen-activated Protein Kinase Kinase 7

MSP:

Multisystem proteinopathy

NBR1:

Neighbor of BRCA1 gene 1

PD:

Parkinson’s disease

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

polyQ:

Polyglutamine

PQC:

Protein quality control

RACK1:

Receptor for Activated C Kinase 1

rhoA:

Ras homolog gene family member A

RNPs:

Ribonucleic proteins

ROCK1:

Rho-associated coiled-coil containing protein kinase 1

SCA3:

Spinocerebellar ataxia 3

SG:

Stress granule

SOD1:

Superoxide dismutase 1

SQSTM1:

Sequestosome 1

TDP-43:

TAR DNA-binding protein 43

TIA-1:

T-cell intracytoplasmic antigen

TRAF2:

TNF receptor-associated factor 2

UPS:

Ubiquitin proteasome system

VCP:

Valosin containing protein

References

  • Acosta JR, Goldsbury C, Winnick C, Badrock AP, Fraser ST, Laird AS, Hall TE, Don EK, Fifita JA, Blair IP, Nicholson GA, Cole NJ (2014) Mutant human FUS is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic Zebrafish cells. PLoS One 9(6):e90572

    PubMed  PubMed Central  Google Scholar 

  • Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 277(48):45920–45927

    CAS  PubMed  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115(Pt 16):3227–3234

    CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150

    CAS  PubMed  Google Scholar 

  • Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Hohfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148

    CAS  PubMed  Google Scholar 

  • Badri KR, Modem S, Gerard HC, Khan I, Bagchi M, Hudson AP, Reddy TR (2006) Regulation of Sam68 activity by small heat shock protein 22. J Cell Biochem 99(5):1353–1362

    CAS  PubMed  Google Scholar 

  • Bang OS, Ha BG, Park EK, Kang SS (2000) Activation of Akt is induced by heat shock and involved in suppression of heat-shock-induced apoptosis of NIH3T3 cells. Biochem Biophys Res Commun 278(2):306–311

    CAS  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555

    CAS  PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    PubMed  PubMed Central  Google Scholar 

  • Boncoraglio A, Minoia M, Carra S (2012) The family of mammalian small heat shock proteins (HSPBs): implications in protein deposit diseases and motor neuropathies. Int J Biochem Cell Biol 44(10):1657–1669

    CAS  PubMed  Google Scholar 

  • Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153(7):1461–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carra S, Landry J (2006) Small heat shock proteins in neurodegenerative diseases. In: Radons J, Multhoff G (eds) Heat shock proteins in biology and medicine, chapter 18:331–351

    Google Scholar 

  • Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14(12):1659–1669

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Lambert H, Landry J (2008a) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Landry J (2008b) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4(2):237–239

    CAS  PubMed  Google Scholar 

  • Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH (2009) HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 284(9):5523–5532

    CAS  PubMed  Google Scholar 

  • Carra S, Boncoraglio A, Kanon B, Brunsting JF, Minoia M, Rana A, Vos MJ, Seidel K, Sibon OC, Kampinga HH (2010) Identification of the Drosophila ortholog of HSPB8: implication of HSPB8 loss of function in protein folding diseases. J Biol Chem 285(48):37811–37822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147(6):1181–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    CAS  PubMed  Google Scholar 

  • Chowdary TK, Raman B, Ramakrishna T, Rao CM (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381(Pt 2):379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev 6(1):79–87

    CAS  Google Scholar 

  • Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446

    CAS  PubMed  Google Scholar 

  • Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456

    CAS  PubMed  Google Scholar 

  • Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuesta R, Laroia G, Schneider RJ (2000) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14(12):1460–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    CAS  PubMed  Google Scholar 

  • Datskevich PN, Mymrikov EV, Gusev NB (2012) Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins. Biochimie 94(8):1794–1804

    CAS  PubMed  Google Scholar 

  • Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11(20):1569–1577

    CAS  PubMed  Google Scholar 

  • Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, Sadoshima J, Vatner SF (2002) H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 91(11):1007–1014

    CAS  PubMed  Google Scholar 

  • Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol 39(5–6):261–277

    CAS  PubMed  Google Scholar 

  • Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190(5):719–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36(6):602–606

    CAS  PubMed  Google Scholar 

  • Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the super family of mammalian small stress proteins. Cell Stress Chaperones 8(1):62–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, Landry J (2010) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425(1):245–255

    CAS  Google Scholar 

  • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28(7):889–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15(12):5383–5398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbo J, Gaucher-Di-Stasio C, Weidmann S, Guzzo J, Garrido C (2011) Quantification of HSP27 and HSP70 molecular chaperone activities. Methods Mol Biol 787:137–143

    CAS  PubMed  Google Scholar 

  • Gregory JM, Barros TP, Meehan S, Dobson CM, Luheshi LM (2012) The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PLoS One 7(2):e31899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska K, Malcova I, Novakova L, Janoskova D, Valasek L, Hasek J (2009) Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122(Pt 12):2078–2088

    CAS  PubMed  Google Scholar 

  • Hageman J, Rujano MA, van Waarde MA, Kakkar V, Dirks RP, Govorukhina N, Oosterveld-Hut HM, Lubsen NH, Kampinga HH (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37(3):355–369

    CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–579

    CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    CAS  PubMed  Google Scholar 

  • Henao-Mejia J, He JJ (2009) Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp Cell Res 315(19):3381–3395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henao-Mejia J, Liu Y, Park IW, Zhang J, Sanford J, He JJ (2009) Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration. Mol Cell 33(1):87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S (2010) BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PLoS One 6(3):e16828

    Google Scholar 

  • Hua Y, Zhou J (2004) Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 572(1–3):69–74

    CAS  PubMed  Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36(6):597–601

    CAS  PubMed  Google Scholar 

  • Irobi J, Almeida-Souza L, Asselbergh B, De Winter V, Goethals S, Dierick I, Krishnan J, Timmermans JP, Robberecht W, De Jonghe P, Van Den Bosch L, Janssens S, Timmerman V (2010) Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet 19(16):3254–3265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju JS, Weihl CC (2010) Inclusion body myopathy, Paget’s disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet 19(R1):R38–R45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju JS, Miller SE, Hanson PI, Weihl CC (2008) Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 283(44):30289–30299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187(6):875–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev 11(8):579–592

    CAS  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8(1):53–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(Pt 6):963–969

    CAS  PubMed  Google Scholar 

  • Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151(6):1257–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikis EA, Gidalevitz T, Morimoto RI (2010) Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol 694:138–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimball SR (1999) Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 31(1):25–29

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb SJ, Snyder PJ, Poi EJ, Renard EA, Bartlett A, Gu S, Sutton S, Arnold WD, Freimer ML, Lawson VH, Kissel JT, Prior TW (2010) Mutant small heat shock protein B3 causes motor neuropathy: utility of a candidate gene approach. Neurology 74(6):502–506

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    CAS  PubMed  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530

    CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    CAS  PubMed  Google Scholar 

  • Kwok AS, Phadwal K, Turner BJ, Oliver PL, Raw A, Simon AK, Talbot K, Agashe VR (2011) HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. J Neurochem 119:1155–1161

    CAS  PubMed  Google Scholar 

  • Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laffita-Mesa JM, Rodriguez Pupo JM, Moreno Sera R, Vazquez Mojena Y, Kouri V, Laguna-Salvia L, Martinez-Godales M, Valdevila Figueira JA, Bauer PO, Rodriguez-Labrada R, Gonzalez Zaldivar Y, Paucar M, Svenningsson P, Velazquez Perez L (2013) De novo mutations in ataxin-2 gene and ALS risk. PLoS One 8(8):e70560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15(1):505–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci U S A 101(9):3224–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7(3):471–474

    CAS  PubMed  Google Scholar 

  • Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18(7):2603–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G, Fischbeck KH (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9(14):2197–2202

    CAS  PubMed  Google Scholar 

  • Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH, Carra S (2014) BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10(9):1603–1621

    CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto RI, Cuervo AM (2014) Proteostasis and the aging proteome in health and disease. J Gerontol 69(Suppl 1):S33–S38

    CAS  Google Scholar 

  • Morrow G, Battistini S, Zhang P, Tanguay RM (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279(42):43382–43385

    CAS  PubMed  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18(3):598–599

    CAS  PubMed  Google Scholar 

  • Nakhro K, Park JM, Kim YJ, Yoon BR, Yoo JH, Koo H, Choi BO, Chung KW (2013) A novel Lys141Thr mutation in small heat shock protein 22 (HSPB8) gene in Charcot-Marie-Tooth disease type 2L. Neuromuscul Disord 23(8):656–663

    PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    CAS  PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298(5599):1775–1779

    CAS  PubMed  Google Scholar 

  • Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154(4):727–736

    CAS  PubMed  Google Scholar 

  • Ramirez-Rodriguez G, Babu H, Klempin F, Krylyshkina O, Baekelandt V, Gijsbers R, Debyser Z, Overall RW, Nicola Z, Fabel K, Kempermann G (2013) The alpha crystallin domain of small heat shock protein b8 (Hspb8) acts as survival and differentiation factor in adult hippocampal neurogenesis. J Neurosci 33(13):5785–5796

    CAS  PubMed  Google Scholar 

  • Rapino F, Jung M, Fulda S (2013) BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33:1713–1724

    PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    CAS  PubMed  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev 5(3):232–241

    CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev 8(7):519–529

    CAS  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    CAS  PubMed  Google Scholar 

  • Saifi GM, Szigeti K, Wiszniewski W, Shy ME, Krajewski K, Hausmanowa-Petrusewicz I, Kochanski A, Reeser S, Mancias P, Butler I, Lupski JR (2005) SIMPLE mutations in Charcot-Marie-Tooth disease and the potential role of its protein product in protein degradation. Hum Mutat 25(4):372–383

    CAS  PubMed  Google Scholar 

  • Sau D, Rusmini P, Crippa V, Onesto E, Bolzoni E, Ratti A, Poletti A (2011) Dysregulation of axonal transport and motorneuron diseases. Biol Cell 103(2):87–107

    CAS  PubMed  Google Scholar 

  • Schwab C, Arai T, Hasegawa M, Yu S, McGeer PL (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67(12):1159–1165

    PubMed  Google Scholar 

  • Seidel K, Vinet J, Dunnen WF, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HW, Rüb U, Kampinga HH, Carra S (2012) The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 38(1):39–53

    CAS  PubMed  Google Scholar 

  • Shemetov AA, Gusev NB (2011) Biochemical characterization of small heat shock protein HspB8 (Hsp22)-Bag3 interaction. Arch Biochem Biophys 513(1):1–9

    CAS  PubMed  Google Scholar 

  • Smith CC, Yu YX, Kulka M, Aurelian L (2000) A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 275(33):25690–25699

    CAS  PubMed  Google Scholar 

  • Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL, Lipe HP, Scherer SS, Bird TD, Chance PF (2003) Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60(1):22–26

    CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM, Hoppe AD, Carra S, DeGuzman C, Martin JL, Simon S, Vicart P, Welsh MJ, Landry J, Benndorf R (2010) Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress Chaperones 15(5):567–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M (2012) Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 33(4):815–829

    PubMed  Google Scholar 

  • Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332(6025):91–94

    CAS  PubMed  Google Scholar 

  • Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM, FitzPatrick D, Schmedding E, De Vriendt E, Jacobs A, Van Gerwen V, Wagner K, Hartung HP, Timmerman V (2003) Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 72(3):722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    CAS  PubMed  Google Scholar 

  • Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer’s disease – a review. Int J Clin Exp Pathol 4(2):147–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolozin B (2014) Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov Med 17(91):47–52

    PubMed  Google Scholar 

Download references

Acknowledgments

Serena Carra is grateful to MIUR (Rita Levi Montalcini Principal Research Fellowship). Serena Carra and Angelo Poletti are grateful to The AriSLA Foundation, Cariplo Foundation, AFM-Telethon France for support. Angelo Poletti is also graeful to Telethon, Italy, Regione Lombardia and the University of Milan for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Carra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poletti, A., Carra, S. (2015). Role of HSPB8 in the Proteostasis Network: From Protein Synthesis to Protein Degradation and Beyond. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_21

Download citation

Publish with us

Policies and ethics