Skip to main content

Heat Shock Alters Keratocyte Movement and Morphology: Exploring a Role for HSP27 (HSPB1)

  • Chapter
  • 1243 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

HSP27 is essential for mammalian cell movement. To further explore the effects of heat shock and the mechanistic role of HSP27, we have initiated a study using a well-established model of rapidly moving cells, the fish keratocyte. Here we report that heat shock causes a decrease in cell speed. Since changes in cell morphology can drastically affect cell movement, we also monitored changes in cell morphology. Heat shock caused a decrease in the number of polar cells and an increase in those with one stuck adherent edge, indicating the occurrence of both cytoskeletal re-organization and increased adhesion to substrata. Analyses of HSP27 levels using Western blots showed they were relatively high in keratocytes prior to heat shock and remained high afterward. In contrast, Western blot analysis of HSP70 showed that it was induced strongly by heat shock, indicating that fish keratocytes mounted a robust heat shock response. Surprisingly, given the propensity of HSP27 to localize in nuclear/perinuclear regions following heat shock, the location of HSP27 in fish keratocytes was unchanged as shown by indirect immunostaining with anti-HSP27 antibodies. Fluorescence intensities of immunostained images of cells before and after heat shock were quantified using Image J software. The results of this analysis showed that fluorescence intensity decreased following heat shock, suggesting changes in HSP27 that affected antibody recognition. Possible roles for HSP27 in regulating actin filament dynamics, cell speed and morphology are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8(12):5059–5071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269(32):20780–20784

    CAS  PubMed  Google Scholar 

  • Borrelli MJ, Bernock LJ, Landry J, Spitz DR, Weber LA, Hickey E, Freeman ML, Corry PM (2002) Stress protection by a fluorescent Hsp27 chimera that is independent of nuclear translocation or multimeric dissociation. Cell Stress Chaperones 7(3):281–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke JP, Mearow KM, Qin D, Tan L, You Q, Liu X (2013) Cell stress promotes the association of phosphorylated HspB1 with F-actin, expression of heat shock protein 27 and proliferating cell nuclear antigen in human retinoblastoma. PLoS One 8(7):e68978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datskevich PN, Gusev NB (2013) Structure and properties of chimeric small heat shock proteins containing yellow fluorescent protein attached to their C-terminal ends. Cell Stress Chaperones. doi:10.1007/s12192-013-0477-0

    PubMed Central  PubMed  Google Scholar 

  • Doshi BM, Hightower LE, Lee J (2009) The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock. Cell Stress Chaperones 14:445–457. doi:10.1007/s12192-008-0098-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du J, Zhang L, Yang Y, Li W, Chen L, Ge Y, Sun C, Zhu Y, Gu L (2010) ATP depletion-induced actin rearrangement reduces cell adhesion via p38 MAPK-HSP27 signaling in renal proximal tubule cells. Cell Physiol Biochem 25(4–5):501–510

    Article  CAS  PubMed  Google Scholar 

  • During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J, Southwick FS (2007) Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. EMBO J 26(9):2240–2250. doi:10.1038/sj.emboj.7601687, 7601687 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274(21):14867–14874. doi:10.1074/jbc.274.21.14867

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Arguinzonis M, Padro T, Lugano R, Llorente-Cortes V, Badimon L (2010) Low-density lipoproteins induce heat shock protein 27 dephosphorylation, oligomerization, and subcellular relocalization in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. doi:10.1161/atvbaha.109.198440, ATVBAHA.109.198440

    PubMed  Google Scholar 

  • Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA (2008) HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 56(10):1061–1075. doi:10.1002/glia.20679

    Article  PubMed  Google Scholar 

  • Graceffa P (2011) Hsp27-actin interaction. Biochem Res Int 2011:901572

    Article  PubMed Central  PubMed  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–368

    CAS  PubMed  Google Scholar 

  • Hirano S, Shelden EA, Gilmont RR (2004) HSP27 regulates fibroblast adhesion, motility, and matrix contraction. Cell Stress Chaperones 9(1):29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Ishihara A et al (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400(6742):382–386

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Eom M, Lee SJ, Kim S, Park HJ, Park D (2001) BetaPix-enhanced p38 activation by Cdc42/Rac/PAK/MKK3/6-mediated pathway. Implication in the regulation of membrane ruffling. J Biol Chem 276(27):25066–25072. doi:10.1074/jbc.M010892200

    Article  CAS  PubMed  Google Scholar 

  • Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M, Geiger B (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114(2):255–261. doi:10.1083/jcb.114.2.255

    Article  CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7(2):167–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura N, Nomura M, Sugiyama K, Hamada J-I (2007) Phorbol 12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells is mediated via p38MAPK/Hsp27 pathway. Biochem Pharmacol 74(5):690–701

    Article  CAS  PubMed  Google Scholar 

  • Norris CE, Brown MA, Hickey E, Weber LA, Hightower LE (1997) Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30. Mol Biol Evol 14(10):1050–1061

    Article  CAS  PubMed  Google Scholar 

  • Stöhr N, Hüttelmaier S (2012) IGF2BP1: a post-transcriptional “driver” of tumor cell migration. Cell Adhes Migr 6(4):312–318

    Article  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313(3):307–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Hightower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doshi, B.M., Hightower, L.E., Lee, J. (2015). Heat Shock Alters Keratocyte Movement and Morphology: Exploring a Role for HSP27 (HSPB1). In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_19

Download citation

Publish with us

Policies and ethics