Skip to main content

Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners

  • Chapter
Book cover The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

Small heat shock proteins (HspB proteins) form a diverse family of proteins that have evolved distinct modes of action to protect cells from proteotoxic stress. Studies conducted within the last 25 years have revealed specialized roles for some HspB, in particular for HspB1, HspB8, and its cochaperone Bag3, in the modulation of actin-based cytoskeletal dynamics under physiological and stress conditions, which might be related to their linkage to human cancer. Little is known, however, on whether and how such biological activities on signaling are connected to pathways within the quality control network. In this chapter, we examine functional relationships between HspB proteins, the cochaperone Bag3 and actin dynamics and describe the mechanisms known so far that are responsible for their modulation of actin architecture. We further discuss on how such activities might be connected to quality control network. While some pieces of the puzzle might need to be inserted differently, we hope that this review will stimulate further studies to elucidate the mechanistic behind chaperone-mediated actin remodeling by HspB proteins and their partners.

Solenn M. Guilbert, Alice-Anaïs Varlet are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlers A, Belka C, Gaestel M, Lamping N, Sott C, Herrmann F, Brach MA (1994) Interleukin-1-induced intracellular signaling pathways converge in the activation of mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 and the subsequent phosphorylation of the 27-kilodalton heat shock protein in monocytic cells. Mol Pharmacol 46:1077–1083

    CAS  PubMed  Google Scholar 

  • Alberti S, Esser C, Hohfeld J (2003) BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    PubMed Central  PubMed  Google Scholar 

  • Almonacid M, Terret ME, Verlhac MH (2014) Actin-based spindle positioning: new insights from female gametes. J Cell Sci 127:477–483

    CAS  PubMed  Google Scholar 

  • Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J (2005) BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16:5891–5900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Hohfeld J (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20:143–148

    CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2012) HspB1 dynamic phospho-oligomeric structure dependent interactome as cancer therapeutic target. Curr Mol Med 12:1151–1163

    CAS  PubMed  Google Scholar 

  • Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the hippo pathway: regulation and substrates. Semin Cell Dev Biol 23:770–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belaid A, Cerezo M, Chargui A, Corcelle-Termeau E, Pedeutour F, Giuliano S, Ilie M, Rubera I, Tauc M, Barale S, Bertolotto C, Brest P, Vouret-Craviari V, Klionsky DJ, Carle GF, Hofman P, Mograbi B (2013) Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res 73:4311–4322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belaid A, Ndiaye PD, Cerezo M, Cailleteau L, Brest P, Klionsky DJ, Carle GF, Hofman P, Mograbi B (2014) Autophagy and SQSTM1 on the RHOA(d) again: emerging roles of autophagy in the degradation of signaling proteins. Autophagy 10:201–208

    CAS  PubMed  Google Scholar 

  • Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P (1995) Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 14:5920–5930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780–20784

    CAS  PubMed  Google Scholar 

  • Benndorf R, Sun X, Gilmont RR, Biederman KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC, Welsh MJ (2001) HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem 276:26753–26761

    CAS  PubMed  Google Scholar 

  • Brophy CM, Dickinson M, Woodrum D (1999a) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274:6324–6329

    CAS  PubMed  Google Scholar 

  • Brophy CM, Lamb S, Graham A (1999b) The small heat shock-related protein-20 is an actin-associated protein. J Vasc Surg 29:326–333

    CAS  PubMed  Google Scholar 

  • Brunton VG, Frame MC (2008) Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol 8:427–432

    CAS  PubMed  Google Scholar 

  • Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14:1659–1669

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Lambert H, Landry J (2008a) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283:1437–1444

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Landry J (2008b) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4:237–239

    CAS  PubMed  Google Scholar 

  • Carra S, Boncoraglio A, Kanon B, Brunsting JF, Minoia M, Rana A, Vos MJ, Seidel K, Sibon OC, Kampinga HH (2010) Identification of the Drosophila ortholog of HSPB8: implication of HSPB8 loss of function in protein folding diseases. J Biol Chem 285:37811–37822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC, Aldaz CM (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 60:5977–5983

    CAS  PubMed  Google Scholar 

  • Chavez Zobel AT, Loranger A, Marceau N, Theriault JR, Lambert H, Landry J (2003) Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant. Hum Mol Genet 12:1609–1620

    CAS  PubMed  Google Scholar 

  • Chowdary TK, Raman B, Ramakrishna T, Rao CM (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381:379–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk ON, Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young Z, Rauch JN, Gestwicki JE, Takayama S, Sherman MY (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74:4731–4740

    CAS  PubMed  Google Scholar 

  • Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456

    CAS  PubMed  Google Scholar 

  • Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005) Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J Biol Chem 280:38673–38681

    CAS  PubMed  Google Scholar 

  • Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, Sadoshima J, Vatner SF (2002) H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 91:1007–1014

    CAS  PubMed  Google Scholar 

  • Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?–A functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    CAS  PubMed  Google Scholar 

  • Doong H, Rizzo K, Fang S, Kulpa V, Weissman AM, Kohn EC (2003) CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins. J Biol Chem 278:28490–28500

    CAS  PubMed  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    CAS  PubMed  Google Scholar 

  • During RL, Li W, Hao B, Koenig JM, Stephens DS, Quinn CP, Southwick FS (2005) Anthrax lethal toxin paralyzes neutrophil actin-based motility. J Infect Dis 192:837–845

    CAS  PubMed  Google Scholar 

  • During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J, Southwick FS (2007) Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. EMBO J 26:2240–2250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontanella B, Birolo L, Infusini G, Cirulli C, Marzullo L, Pucci P, Turco MC, Tosco A (2010) The cochaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding. Int J Biochem Cell Biol 42:641–650

    CAS  PubMed  Google Scholar 

  • Frische EW, Zwartkruis FJ (2010) Rap1, a mercenary among the Ras-like GTPases. Dev Biol 340:1–9

    CAS  PubMed  Google Scholar 

  • Fuchs M, Poirier DJ, Seguin SJ, Lambert H, Carra S, Charette SJ, Landry J (2010) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425:245–255

    CAS  Google Scholar 

  • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. Embo J 28:889–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12:149–156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396

    CAS  PubMed  Google Scholar 

  • Garmyn M, Mammone T, Pupe A, Gan D, Declercq L, Maes D (2001) Human keratinocytes respond to osmotic stress by p38 map kinase regulated induction of HSP70 and HSP27. J Invest Dermatol 117:1290–1295

    CAS  PubMed  Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    CAS  PubMed  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110:357–368

    CAS  PubMed  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257

    CAS  PubMed  Google Scholar 

  • Hirade K, Kozawa O, Tanabe K, Niwa M, Matsuno H, Oiso Y, Akamatsu S, Ito H, Kato K, Katagiri Y, Uematsu T (2002) Thrombin stimulates dissociation and induction of HSP27 via p38 MAPK in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 283:H941–H948

    CAS  PubMed  Google Scholar 

  • Hishiya A, Kitazawa T, Takayama S (2010) BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress. Circ Res 107:1220–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S (2006) BAG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol 169:761–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C (2010) Roles of E3 ubiquitin ligases in cell adhesion and migration. Cell Adh Migr 4:10–18

    PubMed Central  PubMed  Google Scholar 

  • Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem FEBS 227:416–427

    CAS  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392

    CAS  PubMed  Google Scholar 

  • Ilsley JL, Sudol M, Winder SJ (2002) The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal 14:183–189

    CAS  PubMed  Google Scholar 

  • Ito H, Iwamoto I, Inaguma Y, Takizawa T, Nagata K, Asano T, Kato K (2005) Endoplasmic reticulum stress induces the phosphorylation of small heat shock protein, Hsp27. J Cell Biochem 95:932–941

    CAS  PubMed  Google Scholar 

  • Iwasaki M, Homma S, Hishiya A, Dolezal SJ, Reed JC, Takayama S (2007) BAG3 regulates motility and adhesion of epithelial cancer cells. Cancer Res 67:10252–10259

    CAS  PubMed  Google Scholar 

  • Iwasaki M, Tanaka R, Hishiya A, Homma S, Reed JC, Takayama S (2010) BAG3 directly associates with guanine nucleotide exchange factor of Rap1, PDZGEF2, and regulates cell adhesion. Biochem Biophys Res Commun 400:413–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaattela M, Wissing D (1993) Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med 177:231–236

    CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    CAS  PubMed  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kappe G, Boelens WC, de Jong WW (2010) Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15:457–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kassis JN, Virador VM, Guancial EA, Kimm D, Ho AS, Mishra M, Chuang EY, Cook J, Gius D, Kohn EC (2009) Genomic and phenotypic analysis reveals a key role for CCN1 (CYR61) in BAG3-modulated adhesion and invasion. J Pathol 218:495–504

    CAS  PubMed  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1999) Selective stimulation of Hsp27 and alphaB-crystallin but not Hsp70 expression by p38 MAP kinase activation. Cell Stress Chaperones 4:94–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ke L, Meijering RA, Hoogstra-Berends F, Mackovicova K, Vos MJ, Van Gelder IC, Henning RH, Kampinga HH, Brundel BJ (2011) HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 6:e20395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MV, Seit-Nebi AS, Gusev NB (2004a) The problem of protein kinase activity of small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 325:649–652

    CAS  PubMed  Google Scholar 

  • Kim MV, Seit-Nebi AS, Marston SB, Gusev NB (2004b) Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 315:796–801

    CAS  PubMed  Google Scholar 

  • Kim MV, Kasakov AS, Seit-Nebi AS, Marston SB, Gusev NB (2006) Structure and properties of K141E mutant of small heat shock protein HSP22 (HspB8, H11) that is expressed in human neuromuscular disorders. Arch Biochem Biophys 454:32–41

    CAS  PubMed  Google Scholar 

  • Knauf U, Bielka H, Gaestel M (1992) Over-expression of the small heat-shock protein, hsp25, inhibits growth of Ehrlich ascites tumor cells. FEBS Lett 309:297–302

    CAS  PubMed  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    CAS  PubMed  Google Scholar 

  • Kouyama T, Mihashi K (1981) Fluorimetry study of N-(1-pyrenyl) iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 114:33–38

    CAS  PubMed  Google Scholar 

  • Kunda P, Baum B (2009) The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 19:174–179

    CAS  PubMed  Google Scholar 

  • Kwok AS, Phadwal K, Turner BJ, Oliver PL, Raw A, Simon AK, Talbot K, Agashe VR (2011) HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. J Neurochem 119:1155–1161

    CAS  PubMed  Google Scholar 

  • Lambrechts A, Gevaert K, Cossart P, Vandekerckhove J, Van Troys M (2008) Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 18:220–227

    CAS  PubMed  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry J, Huot J (1995) Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol Biochim Biol Cell 73:703–707

    CAS  Google Scholar 

  • Landry J, Huot J (1999) Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem Soc Symp 64:79–89

    CAS  PubMed  Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    CAS  PubMed  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993a) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    CAS  PubMed  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993b) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    CAS  PubMed  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie JN, Landry MC, Faure RL, Champagne C (2010) Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 22:1604–1614

    CAS  PubMed  Google Scholar 

  • Li N, Du ZX, Zong ZH, Liu BQ, Li C, Zhang Q, Wang HQ (2013) PKCdelta-mediated phosphorylation of BAG3 at Ser187 site induces epithelial-mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells. Oncogene 32:4539–4548

    CAS  PubMed  Google Scholar 

  • Linares JF, Amanchy R, Greis K, Diaz-Meco MT, Moscat J (2011) Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis and tumor cell proliferation. Mol Cell Biol 31:105–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linnemann A, van der Ven PF, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Furst DO (2010) The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 89:681–692

    CAS  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, Young PR (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488–8492

    CAS  PubMed  Google Scholar 

  • McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 280:20995–21003

    CAS  PubMed  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    CAS  PubMed  Google Scholar 

  • Miron T, Wilchek M, Geiger B (1988) Characterization of an inhibitor of actin polymerization in vinculin-rich fraction of turkey gizzard smooth muscle. Eur J Biochem FEBS 178:543–553

    CAS  Google Scholar 

  • Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M, Geiger B (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114:255–261

    CAS  PubMed  Google Scholar 

  • Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7:19–24

    CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller E, Burger-Kentischer A, Neuhofer W, Fraek ML, Marz J, Thurau K, Beck FX (1999) Possible involvement of heat shock protein 25 in the angiotensin II-induced glomerular mesangial cell contraction via p38 MAP kinase. J Cell Physiol 181:462–469

    CAS  PubMed  Google Scholar 

  • Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichon S, Bryckaert M, Berrou E (2004) Control of actin dynamics by p38 MAP kinase – Hsp27 distribution in the lamellipodium of smooth muscle cells. J Cell Sci 117:2569–2577

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O’Kane CJ, Brown SD, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37:771–776

    CAS  PubMed  Google Scholar 

  • Razinia Z, Makela T, Ylanne J, Calderwood DA (2012) Filamins in mechanosensing and signaling. Annu Rev Biophys 41:227–246

    CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM (2008) Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res 68:2557–2560

    CAS  PubMed  Google Scholar 

  • Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178

    CAS  PubMed  Google Scholar 

  • Rollet E, Lavoie JN, Landry J, Tanguay RM (1992) Expression of Drosophila’s 27 kDa heat shock protein into rodent cells confers thermal resistance. Biochem Biophys Res Commun 185:116–120

    CAS  PubMed  Google Scholar 

  • Rosati A, Graziano V, De Laurenzi V, Pascale M, Turco MC (2011) BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis 2:e141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037

    CAS  PubMed  Google Scholar 

  • Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    CAS  PubMed  Google Scholar 

  • Salah Z, Alian A, Aqeilan RI (2012) WW domain-containing proteins: retrospectives and the future. Front Biosci 17:331–348

    CAS  Google Scholar 

  • Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65:83–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin KD, Lee MY, Shin DS, Lee S, Son KH, Koh S, Paik YK, Kwon BM, Han DC (2005) Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 280:41439–41448

    CAS  PubMed  Google Scholar 

  • Singh BN, Rao KS, Ramakrishna T, Rangaraj N, Rao Ch M (2007) Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo. J Mol Biol 366:756–767

    CAS  PubMed  Google Scholar 

  • Smith CC, Yu YX, Kulka M, Aurelian L (2000) A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 275:25690–25699

    CAS  PubMed  Google Scholar 

  • Smoyer WE, Ransom RF (2002) Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J 16:315–326

    CAS  PubMed  Google Scholar 

  • Soderling SH (2009) Grab your partner with both hands: cytoskeletal remodeling by Arp2/3 signaling. Sci Signal 2:pe5

    PubMed Central  PubMed  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    CAS  PubMed  Google Scholar 

  • Taylor MP, Koyuncu OO, Enquist LW (2011) Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 9:427–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    CAS  PubMed  Google Scholar 

  • Ulbricht A, Hohfeld J (2013) Tension-induced autophagy: may the chaperone be with you. Autophagy 9:920–922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulbricht A, Arndt V, Hohfeld J (2013) Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Commun Integr Biol 6:e24925

    PubMed Central  PubMed  Google Scholar 

  • Vertii A, Hakim C, Kotlyarov A, Gaestel M (2006) Analysis of properties of small heat shock protein Hsp25 in MAPK-activated protein kinase 2 (MK2)-deficient cells: MK2-dependent insolubilization of Hsp25 oligomers correlates with susceptibility to stress. J Biol Chem 281:26966–26975

    CAS  PubMed  Google Scholar 

  • Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Carra S, Sibon OC, Kampinga HH (2011) Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy 7:101–103

    PubMed  Google Scholar 

  • Wang K, Spector A (1996) alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem FEBS 242:56–66

    CAS  Google Scholar 

  • Weber NC, Toma O, Wolter JI, Wirthle NM, Schlack W, Preckel B (2005) Mechanisms of xenon- and isoflurane-induced preconditioning – a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway. Br J Pharmacol 146:445–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welch MD, Way M (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14:242–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh MJ, Gaestel M (1998) Small heat-shock protein family: function in health and disease. Ann N Y Acad Sci 851:28–35

    CAS  PubMed  Google Scholar 

  • Werner A, Disanza A, Reifenberger N, Habeck G, Becker J, Calabrese M, Urlaub H, Lorenz H, Schulman B, Scita G, Melchior F (2013) SCFFbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression. Nat Cell Biol 15:179–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao H, Cheng S, Tong R, Lv Z, Ding C, Du C, Xie H, Zhou L, Wu J, Zheng S (2014) BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma. Lab Invest J Tech Methods Pathol 94:252–261

    CAS  Google Scholar 

  • Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y, Zhou Y (2013) 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126:4173–4186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Qian SB (2011) Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol Biol Cell 22:3277–3288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Lambert H, Landry J (1993) Transient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heat-shocked cells. J Biol Chem 268:35–43

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (Grant number 7088 to JNL and JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josée N. Lavoie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guilbert, S.M., Varlet, AA., Fuchs, M., Lambert, H., Landry, J., Lavoie, J.N. (2015). Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_18

Download citation

Publish with us

Policies and ethics