Skip to main content

The Chloroplast-Localized Plant sHsp in Arabidopsis Thaliana: Role of Its Oligomeric Conformation and Its Translocation into Membranes

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

Recent advances in quantitative proteomics show that small heat shock proteins (sHsps) are among the most highly upregulated proteins in cellular stress response. In plants there are numerous paralogous sHsps expressed in various cellular compartments. The chloroplast-localized sHsp, named Hsp21 with reference to its monomeric size, has an N-terminal region that is some 40 amino acids longer compared to the cytosolic sHsps, and increases plant stress tolerance as shown by Arabidopsis thaliana plants which overexpress Hsp21. Recombinantly expressed and purified Hsp21-protein shows the features expected for a chaperone protein in rescuing temperature-sensitive model substrate proteins from aggregation. Hsp21 is a dodecameric protein, with C-terminal tails that keep the dodecamer together but are highly flexible in solution. The N-terminal domains, which resemble intrinsically disordered proteins and are located in the interior of the dodecamer, contain conserved methionine residues of crucial importance for function. Methionine sulfoxidation abolishes the chaperone activity in vitro, but in vivo such oxidized methioniones appear to be continuously re-reduced thanks to a chloroplast-localized form of peptide methionine sulfoxide reductase, an important enzyme expressed ubiquitously and belonging to the minimal gene set for life. There is not a clear picture of which the endogenous substrate proteins of Hsp21 are. For more than a decade it has been observed that cyanobacterial sHsps enter the membranes at increased temperatures. In a quantitative proteomics approach we have recently analyzed and compared Hsp21 with hundreds of other chloroplast proteins, and found that Hsp21 is fairly unique with respect to its translocation into membrane in heat-stressed plants. One reason for the oligomericity of Hsp21 is suggested to be the possibility to rapidly supply hydrophobic surfaces with chaperoning capacity in response to stress, while still preventing membrane lysis by such hydrophobic surfaces under non-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abulimiti A, Qiu X, Chen J, Liu Y, Chang Z (2003) Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem Biophys Res Commun 305:87–93

    Article  CAS  PubMed  Google Scholar 

  • Ahrman E, Lambert W, Aquilina JA, Robinson CV, Emanuelsson CS (2007) Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci 16:1464–1478

    Article  PubMed Central  PubMed  Google Scholar 

  • Balogi Z, Cheregi O, Giese KC, Juhasz K, Vierling E, Vass I, Vigh L, Horvath I (2008) A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803. J Biol Chem 283:22983–22991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardwell JC, Jakob U (2012) Conditional disorder in chaperone action. Trends Biochem Sci 37:517–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O'Neill H, Vierling E (2011) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E (2013) An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J Mol Biol 425:1683–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beck M, Malmstrom JA, Lange V, Schmidt A, Deutsch EW, Aebersold R (2009) Visual proteomics of the human pathogen Leptospira interrogans. Nat Methods 6:817–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernfur K, Larsson O, Larsson C, Gustavsson N (2013) Relative abundance of integral plasma membrane proteins in Arabidopsis leaf and root tissue determined by metabolic labeling and mass spectrometry. PLoS One 8:e71206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BK (1997) Subunit exchange of alphaA-crystallin. J Biol Chem 272:29511–29517

    Article  CAS  PubMed  Google Scholar 

  • Bova MP, McHaourab HS, Han Y, Fung BK (2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 368:20110409

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Vierling E (1991) Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gen Genet 226:425–431

    Article  CAS  PubMed  Google Scholar 

  • Eyles SJ, Gierasch LM (2010) Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci U S A 107:2727–2728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    Article  CAS  PubMed  Google Scholar 

  • Giese KC, Basha E, Catague BY, Vierling E (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci U S A 102:18896–18901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustavsson N, Harndahl U, Emanuelsson A, Roepstorff P, Sundby C (1999) Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer. Protein Sci 8:2506–2512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustavsson N, Kokke BP, Anzelius B, Boelens WC, Sundby C (2001) Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Protein Sci 10:1785–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J 29:545–553

    Article  CAS  PubMed  Google Scholar 

  • Harndahl U, Hall RB, Osteryoung KW, Vierling E, Bornman JF, Sundby C (1999) The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones 4:129–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JL (2013) Small heat-shock proteins: paramedics of the cell. Top Curr Chem 328:69–98

    CAS  PubMed  Google Scholar 

  • Horvath I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220

    Article  CAS  PubMed  Google Scholar 

  • Huang HK, Taneva SG, Lee J, Silva LP, Schriemer DC, Cornell RB (2013) The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J Mol Biol 425:1546–1564

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Garrido C (2012) HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol 44:1706–1710

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Weiss SJ, Levine RL (2014) Methionine oxidation and reduction in proteins. Biochim Biophys Acta 1840:901–905

    Article  CAS  PubMed  Google Scholar 

  • Lambert W, Koeck PJ, Ahrman E, Purhonen P, Cheng K, Elmlund D, Hebert H, Emanuelsson C (2011) Subunit arrangement in the dodecameric chloroplast small heat shock protein Hsp21. Protein Sci 20:291–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert W, Rutsdottir G, Hussein R, Bernfur K, Kjellstrom S, Emanuelsson C (2013) Probing the transient interaction between the small heat-shock protein Hsp21 and a model substrate protein using crosslinking mass spectrometry. Cell Stress Chaperones 18:75–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762–765

    Article  PubMed Central  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2014) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789

    Article  Google Scholar 

  • Sadanandom A, Poghosyan Z, Fairbairn DJ, Murphy DJ (2000) Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiol 123:255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Söderberg C, Lambert W, Kjellström S, Wiegandt A, Peterson Wulff R, Rutsdottir G, Emanuelsson C (2012) Detection of crosslinks within and between proteins by LC-MALDI-TOFTOF and the software FINDX to reduce the MSMS-data to acquire for validation. PLoS One 7(6):e38927

    Google Scholar 

  • Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H, Basha E, Jaya N, Vierling E, Benesch JL (2012) Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem Biol 19:599–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Montfort R, Slingsby C, Vierling E (2001a) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    PubMed  Google Scholar 

  • Van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001b) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood JL, Horvath I (2007) Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann N Y Acad Sci 1113:40–51

    Article  CAS  PubMed  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 96:14394–14399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25:2925–2943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Thanks to Elizabeth Vierling who cloned the gene for Hsp21 and gave it to us, Wilbert C Boelens for collaboration on sHsp chaperone activity measurements, Denis Murphy for discovery and purification of the chloroplast-localized peptide methionine sulfoxide reductase and the former PhD students Ulrika Härndahl, Niklas Gustavsson, Emma Åhrman and Wietske Lambert who contributed to the knowledge on the chloroplast-localized sHsp in Arabidopsis thaliana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Emanuelsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernfur, K., Rutsdottir, G., MÃ¥nsson, C., Emanuelsson, C. (2015). The Chloroplast-Localized Plant sHsp in Arabidopsis Thaliana: Role of Its Oligomeric Conformation and Its Translocation into Membranes. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_10

Download citation

Publish with us

Policies and ethics