Skip to main content

The Quest for Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing

  • Chapter
Compressed Sensing and its Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

An intriguing phenomenon in many instances of compressed sensing is that the reconstruction quality is governed not just by the overall sparsity of the object to recover, but also on its structure. This chapter is about understanding this phenomenon, and demonstrating how it can be fruitfully exploited by the design of suitable sampling strategies in order to outperform more standard compressed sensing techniques based on random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In actual fact, the sensing device takes measurements of the continuous Fourier transform of a function \(x \in L^{2}(\mathbb{R}^{d})\). As discussed in [1, 4], modelling continuous Fourier measurements as discrete Fourier measurements can lead to inferior reconstructions, as well as inverse crimes. To avoid this, one must consider an infinite-dimensional compressed sensing approach, as in (5.2). See [2, 4] for details, as well as [29] for implementation in MRI. For simplicity, we shall continue to work with the finite-dimensional model in the remainder of this chapter.

  2. 2.

    For brevity, we do not give the proof of this lemma or the later recovery results for Haar wavelets, Theorem 2. Details of the proof can be found in the short note [3].

  3. 3.

    For a proof, we refer to [3].

References

  1. Adcock, B., Hansen, A.C.: Generalized sampling and infinite-dimensional compressed sensing. Technical report NA2011/02, DAMTP, University of Cambridge (2011)

    Google Scholar 

  2. Adcock, B., Hansen, A.C., Poon, C., Roman, B.: Breaking the coherence barrier: a new theory for compressed sensing. arXiv:1302.0561 (2014)

    Google Scholar 

  3. Adcock, B., Hansen, A.C., Roman, B.: A note on compressed sensing of structured sparse wavelet coefficients from subsampled Fourier measurements. arXiv:1403.6541 (2014)

    Google Scholar 

  4. Adcock, B., Hansen, A.C., Roman, B., Teschke, G.: Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum. Adv. Imaging Electron Phys. 182, 187–279 (2014)

    Article  Google Scholar 

  5. Ailon,N., Liberty, E.: An almost optimal unrestricted fast Johnson–Lindenstrauss transform. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2011)

    Google Scholar 

  6. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hedge, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)

    Article  Google Scholar 

  7. Bastounis, A., Hansen, A.C.: On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels. arXiv:1411.4449 (2014)

    Google Scholar 

  8. Bigot, J., Boyer, C., Weiss, P.: An analysis of block sampling strategies in compressed sensing. arXiv:1305.4446 (2013)

    Google Scholar 

  9. Binev, P., Dahmen, W., DeVore, R.A., Lamby, P., Savu, D., Sharpley, R.: Compressed sensing and electron microscopy. In: Vogt, T., Dahmen, W., Binev, P. (eds.) Modeling Nanoscale Imaging in Electron Microscopy, Nanostructure Science and Technology, pp. 73–126. Springer, New York (2012)

    Chapter  Google Scholar 

  10. Bourrier, A., Davies, M.E., Peleg, T., PĂ©rez, P., Gribonval, R.: Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems. arXiv:1311.6239 (2013)

    Google Scholar 

  11. Boyer, C., Weiss, P., Bigot, J.: An algorithm for variable density sampling with block-constrained acquisition. SIAM J. Imag. Sci. 7(2), 1080–1107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candès E., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)

    Article  MATH  Google Scholar 

  13. Candès E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  14. Candès, E.J., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)

    Article  Google Scholar 

  15. Candès E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23(3), 969–985 (2007)

    Article  MATH  Google Scholar 

  16. Carson, W.R., Chen, M., Rodrigues, M.R.D., Calderbank, R., Carin, L.: Communications-inspired projection design with application to compressive sensing. SIAM J. Imag. Sci. 5(4), 1185–1212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chartrand, R., Sidky, Y., Pan, X.: Nonconvex compressive sensing for X-ray CT: an algorithm comparison. In: Asilomar Conference on Signals, Systems, and Computers (2013)

    Google Scholar 

  18. Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46, 886–902 (1998)

    Article  MathSciNet  Google Scholar 

  19. Dahlke, S., Kutyniok, G., Steidl, G., Teschke, G.: Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27(2), 195–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolution Inf. Process. 6(2), 157–181 (2008)

    Article  MathSciNet  Google Scholar 

  21. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  22. Do M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  23. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J., Kelly, K., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  25. Duarte M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  26. Eldar, Y.C.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)

    Article  MathSciNet  Google Scholar 

  27. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhauser, New York (2013)

    Book  MATH  Google Scholar 

  28. Gan, L., Do, T.T., Tran, T.D.: Fast compressive imaging using scrambled Hadamard ensemble. Proc. EUSIPCO (2008)

    Google Scholar 

  29. Guerquin-Kern, M., Häberlin, M., Pruessmann, K.P., Unser, M.: A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Trans. Med. Imaging 30(9), 1649–1660 (2011)

    Article  Google Scholar 

  30. Guerquin-Kern, M., Lejeune, L., Pruessmann, K.P., Unser, M.: Realistic analytical phantoms for parallel magnetic resonance imaging. IEEE Trans. Med. Imaging 31(3), 626–636 (2012)

    Article  Google Scholar 

  31. Haldar, J., Hernando, D., Liang, Z.: Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30(4), 893–903 (2011)

    Article  Google Scholar 

  32. He, L., Carin, L.: Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans. Signal Process. 57(9), 3488–3497 (2009)

    Article  MathSciNet  Google Scholar 

  33. He, L., Chen, H., Carin, L.: Tree-structured compressive sensing with variational Bayesian analysis. IEEE Signal Process Lett. 17(3), 233–236 (2010)

    Article  Google Scholar 

  34. Herman, M.A.: Compressive sensing with partial-complete, multiscale Hadamard waveforms. In: Imaging and Applied Optics, p. CM4C.3. Optical Society of America (2013) https://www.osapublishing.org/viewmedia.cfm?uri=COSI-2013-CM4C.3&seq=0

  35. Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    Article  MathSciNet  Google Scholar 

  36. Hinrichs, A., Vybiral, J.: Johnson–Lindenstrauss lemma for circulant matrices. Random Struct. Algorithm 39(3), 391–398 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Huang, G., Jiang, H., Matthews, K., Wilford, P.: Lensless imaging by compressive sensing. arXiv:1305.7181 (2013)

    Google Scholar 

  38. Krahmer, F., Ward, R.: New and improved Johnson–Lindenstrauss embeddings via the restricted isometry property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Krahmer, F., Ward, R.: Stable and robust recovery from variable density frequency samples. IEEE Trans. Image Proc. 23(2), 612–622 (2014)

    Article  MathSciNet  Google Scholar 

  40. Kutyniok, G., Lemvig, J., Lim, W.-Q.: Compactly supported shearlets. In: Neamtu M., Schumaker, L. (eds.) Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics,vol. 13, pp. 163–186. Springer, New York (2012)

    Chapter  Google Scholar 

  41. Leary, R., Saghi, Z., Midgley, P.A., Holland, D.J.: Compressed sensing electron tomography. Ultramicroscopy 131(0), 70–91 (2013)

    Article  Google Scholar 

  42. Liang, D., Xu, G., Wang, H., King, K.F., Xu, D., Ying, L.: Toeplitz random encoding MR imaging using compressed sensing. In: Proceedings/IEEE International Symposium on Biomedical Imaging., pp. 270–273, June 2009

    Google Scholar 

  43. Lin, T., Herrman, F.J.: Compressed wavefield extrapolation. Geophysics 72(5), SM77–SM93 (2007)

    Article  Google Scholar 

  44. Lustig, M., Donoho, D.L., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MRI imaging. Magn. Reson. Imaging 58(6), 1182–1195 (2007)

    Google Scholar 

  45. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  46. Mallat, S.G.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic, London (2009)

    Google Scholar 

  47. Mishali, M., Eldar, Y.C., Elron, A.J.: Xampling: Signal acquisition and processing in union of subspaces. IEEE Trans. Signal Process. 59(10), 4719–4734 (2011)

    Article  MathSciNet  Google Scholar 

  48. Po, D.D.-Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006)

    Article  MathSciNet  Google Scholar 

  49. Puy, G., Marques, J.P., Gruetter, R., Thiran, J., Van De Ville, D., Vandergheynst, P., Wiaux, Y.: Spread spectrum magnetic resonance imaging. IEEE Trans. Med. Imaging 31(3), 586–598 (2012)

    Article  Google Scholar 

  50. Roman, B., Adcock, B., Hansen, A.C.: On asymptotic structure in compressed sensing. arXiv:1406.4178 (2014)

    Google Scholar 

  51. Romberg, J.: Imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 14–20 (2008)

    Article  Google Scholar 

  52. Sebert, F., Xou, Y.M., Ying, L.: Compressed sensing MRI with random B1 field. Proc. Int. Soc. Magn. Reson. Med. 16, 3151 (2008)

    Google Scholar 

  53. Som, S., Schniter, P.: Compressive imaging using approximate message passing and a markov-tree prior. IEEE Trans. Signal Process. 60(7), 3439–3448 (2012)

    Article  MathSciNet  Google Scholar 

  54. Studer, V., Bobin, J., Chahid, M., Moussavi, H., Candès, E., Dahan, M.: Compressive fluorescence microscopy for biological and hyperspectral imaging. Natl. Acad. Sci. USA. 109(26), 1679–1687 (2011)

    Article  Google Scholar 

  55. Tsaig, Y., Donoho, D.L.: Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)

    Article  MATH  Google Scholar 

  56. van den Berg, E., Friedlander, M.P.: SPGL1: a solver for large-scale sparse reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1 (2007)

  57. van den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, L., Carlson, D., Rodrigues, M.R.D., Wilcox, D., Calderbank, R., Carin, L.: Designed measurements for vector count data. Adv. Neural Inf. Process. Syst., pp. 1142–1150 (2013)

    Google Scholar 

  59. Wang, Z., Arce, G.R.: Variable density compressed image sampling. IEEE Trans. Image Process. 19(1), 264–270 (2010)

    Article  MathSciNet  Google Scholar 

  60. Wiaux, Y., Jacques, L., Puy, G., Scaife, A.M.M., Vandergheynst, P.: Compressed sensing imaging techniques for radio interferometry. Mon. Not. R. Astron. Soc. 395(3), 1733–1742 (2009)

    Article  Google Scholar 

  61. Wong, E.C.: Efficient randomly encoded data acquisition for compressed sensing. In: Proceedings on International Society for Magnetic Resonance in Medicine, p. 4893 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors thank Andy Ellison from Boston University Medical School for kindly providing the MRI fruit image, and General Electric Healthcare for kindly providing the brain MRI image. BA acknowledges support from the NSF DMS grant 1318894. ACH acknowledges support from a Royal Society University Research Fellowship. ACH and BR acknowledge the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/L003457/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Adcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adcock, B., Hansen, A.C., Roman, B. (2015). The Quest for Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds) Compressed Sensing and its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16042-9_5

Download citation

Publish with us

Policies and ethics